OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 19 — Jul. 1, 2005
  • pp: 4009–4022

Dispersion control with a Fourier-domain optical delay line in a fiber-optic imaging interferometer

Kye-Sung Lee, A. Ceyhun Akcay, Tony Delemos, Eric Clarkson, and Jannick P. Rolland  »View Author Affiliations

Applied Optics, Vol. 44, Issue 19, pp. 4009-4022 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (259 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recently, Fourier-domain (FD) optical delay lines (ODLs) were introduced for high-speed scanning and dispersion compensation in imaging interferometry. We investigate the effect of first- and second-order dispersion on the photocurrent signal associated with an optical coherence imaging system implemented with a single-mode fiber, a superluminescent diode centered at 950 nm ± 35 nm, a FD ODL, a mirror, and a layered LiTAO3 that has suitable dispersion characteristics to model a skin specimen. We present a practical and useful method to minimize the effect of dispersion through the interferometer and the specimen combined, as well as to quantify the results using two general metrics for resolution. Theoretical and associated experimental results show that, under the optimum solution, the maximum broadening of the point-spread function through a 1-mm-deep specimen is limited to 57% of its original rms width value (i.e., 8.1 µm optimal, 12.7 µm at maximum broadening) compared with approximately 110% when compensation is performed without the specimen taken into account.

© 2005 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.0110) Medical optics and biotechnology : Imaging systems
(170.4500) Medical optics and biotechnology : Optical coherence tomography

Original Manuscript: May 11, 2004
Revised Manuscript: October 29, 2004
Manuscript Accepted: December 2, 2004
Published: July 1, 2005

Kye-Sung Lee, A. Ceyhun Akcay, Tony Delemos, Eric Clarkson, and Jannick P. Rolland, "Dispersion control with a Fourier-domain optical delay line in a fiber-optic imaging interferometer," Appl. Opt. 44, 4009-4022 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pulifito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996). [CrossRef] [PubMed]
  3. A. M. Rollins, M. D. Kulkarni, S. Yazdanafar, R. Ungarunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998), www.opticsex-press.org . [CrossRef] [PubMed]
  4. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, S. A. Bop-part, “Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media,” Appl. Opt. 42, 204–217 (2003). [CrossRef] [PubMed]
  5. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9, 610–615 (2001), www.opticsexpress.org . [CrossRef] [PubMed]
  6. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, S. A. Bop-part, “Autofocus algorithm for dispersion correction in optical coherence tomography,” Appl. Opt. 42, 3038–3046 (2003). [CrossRef] [PubMed]
  7. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12, 2156–2165 (2004), www.opticsexpress.org . [CrossRef] [PubMed]
  8. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, J. S. Duker, “Ultrahigh-resolution, highspeed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004), www.opticsexpress.org . [CrossRef] [PubMed]
  9. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004), www.opticsexpress.org . [CrossRef] [PubMed]
  10. E. D. J. Smith, A. V. Zvyagin, D. D. Sampson, “Real-time dispersion compensation in scanning interferometry,” Opt. Lett. 27, 1998–2000 (2002). [CrossRef]
  11. K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, A. Dienes, “400-Hz mechanical scanning optical delay line,” Opt. Lett. 18, 558–561 (1993). [CrossRef] [PubMed]
  12. G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1812 (1997). [CrossRef]
  13. W. K. Niblack, J. O. Schenk, B. Liu, M. E. Brezinski, “Dispersion in a grating-based optical delay line for optical coherence tomography,” Appl. Opt. 42, 4115–4118 (2003). [CrossRef] [PubMed]
  14. I. Hsu, C. Sun, C. Lu, C. C. Yang, C. Chiang, C. Lin, “Resolution improvement with dispersion manipulation and a retrieval algorithm in optical coherence tomography,” Appl. Opt. 42, 227–234 (2003). [CrossRef] [PubMed]
  15. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, M. Teich, “Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography,” Opt. Express 12, 1353–1362 (2004), www.opticsexpress.org . [CrossRef] [PubMed]
  16. Y. Wang, J. Stuart Nelson, Z. Chen, B. J. Reiser, R. S. Chuck, R. S. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Opt. Express 11, 1411–1417 (2003), www.opticsexpress.org . [CrossRef] [PubMed]
  17. A. V. Zvyagin, E. D. J. Smith, D. D. Sampson, “Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry,” J. Opt. Soc. Am. A 20, 333–341 (2003). [CrossRef]
  18. H. H. Barrett, K. J. Myers, B. E. A. Saleh, eds., Foundations of Image Science, Wiley Series in Pure and Applied Optics (Wiley, Hoboken, N.J., 2004).
  19. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  20. T. L. Troy, S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001). [CrossRef] [PubMed]
  21. K. S. Abedin, H. Ito, “Temperature-dependent dispersion relation of ferroelectric lithium tantalite,” J. Appl. Phys. 80, 6561–6563 (1996). [CrossRef]
  22. T. I. Lakoba, G. P. Agrawal, “Effects of third-order dispersion on dispersion-managed solitons,” J. Opt. Soc. Am. B 16, 1332–1343 (1999). [CrossRef]
  23. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).
  24. C. Akcay, P. Parrein, J. P. Rolland, “Estimation of longitudinal resolution in optical coherence imaging,” Appl. Opt. 41, 5256–5262 (2002). [CrossRef] [PubMed]
  25. E. Sorokin, G. Tempea, T. Brabec, “Measurement of the root-mean-square width and the root-mean-square chirp in ultrafast optics,” J. Opt. Soc. Am. B 17, 146–150 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited