OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 19 — Jul. 1, 2005
  • pp: 4023–4031

Clinical system for interstitial photodynamic therapy with combined on-line dosimetry measurements

Marcelo Soto Thompson, Ann Johansson, Thomas Johansson, Stefan Andersson-Engels, Sune Svanberg, Niels Bendsoe, and Katarina Svanberg  »View Author Affiliations


Applied Optics, Vol. 44, Issue 19, pp. 4023-4031 (2005)
http://dx.doi.org/10.1364/AO.44.004023


View Full Text Article

Enhanced HTML    Acrobat PDF (442 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A system for interstitial photodynamic therapy with δ-aminolaevulinic acid and multiple optical fibers has been developed. The system enables photodynamic treatment of large embedded tumor volumes and utilizes real-time measurements to allow on-line dosimetry. Important parameters such as light fluence rate, sensitizer fluorescence intensity, and changes in local blood oxygen saturation are measured with the same fibers that deliver the therapeutic light. Data from the first clinical treatments on nodular basal cell carcinomas indicate a major treatment-induced light absorption increase, rapid sensitizer photobleaching, and a relatively constant global tissue oxygen saturation level during the treatment.

© 2005 Optical Society of America

OCIS Codes
(170.1460) Medical optics and biotechnology : Blood gas monitoring
(170.5180) Medical optics and biotechnology : Photodynamic therapy
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

History
Original Manuscript: July 20, 2004
Revised Manuscript: February 14, 2005
Manuscript Accepted: February 20, 2005
Published: July 1, 2005

Citation
Marcelo Soto Thompson, Ann Johansson, Thomas Johansson, Stefan Andersson-Engels, Sune Svanberg, Niels Bendsoe, and Katarina Svanberg, "Clinical system for interstitial photodynamic therapy with combined on-line dosimetry measurements," Appl. Opt. 44, 4023-4031 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-19-4023


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. L. Marcus, “Photodynamic therapy of human cancer: clinical status, potential and needs,” in Future Directions and Applications in Photodynamic Therapy, C. J. Gomer, ed., Vol. IS06 of the SPIE Institute Series (SPIE, 1990), pp. 5–56.
  2. L. I. Grossweiner, The Science of Phototherapy (CRC Press, 1994).
  3. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng, “Photodynamic therapy,” J. Natl. Cancer Inst. 90, 889–905 (1998). [CrossRef] [PubMed]
  4. J. C. Kennedy, R. H. Pottier, D. C. Pross, “Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience,” J. Photochem. Photobiol. B. 6, 143–148 (1990). [CrossRef] [PubMed]
  5. J. C. Kennedy, R. H. Pottier, “Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy,” J. Photochem. Photobiol. B. 14, 275–292 (1992). [CrossRef] [PubMed]
  6. K. Svanberg, T. Andersson, D. Killander, I. Wang, U. Stenram, S. Andersson-Engels, R. Berg, J. Johansson, S. Svanberg, “Photodynamic therapy of non-melanoma malignant tumours of the skin using topical δ-amino levulinic acid sensitization and laser irradiation,” Br. J. Dermatol. 130, 743–751 (1994). [CrossRef] [PubMed]
  7. Q. Peng, T. Warloe, K. Berg, J. Moan, M. Kongshaug, K.-E. Giercksky, J. M. Nesland, “5-aminolevulinic acid-based photodynamic therapy: clinical research and future challenges,” Cancer 79, 2282–2308 (1997). [CrossRef] [PubMed]
  8. I. Wang, N. Bendsoe, C. af Klinteberg, A. M. K. Enejder, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Photodynamic therapy versus cryosurgery of basal cell carcinomas; results of a phase III randomized clinical trial,” Br. J. Dermatol. 144, 832–840 (2001). [CrossRef] [PubMed]
  9. K. A. Salva, “Photodynamic therapy: unapproved uses, dosages, or indications,” Clin. Dermatol. 20, 571–581 (2002). [CrossRef] [PubMed]
  10. S. C. Chang, G. Buonaccorsi, A. MacRobert, S. G. Bown, “Interstitial and transurethral photodynamic therapy of the canine prostate using meso-tetra-(m-hydroxyphenyl) chlorin,” Int. J. Cancer 67, 555–562 (1996). [CrossRef] [PubMed]
  11. T. J. Vogl, K. Eichler, M. G. Mack, S. Zangos, C. Herzog, A. Thalhammer, K. Engelmann, “Interstitial photodynamic laser therapy in interventional oncology,” Eur. Radiol. 14, 1063–1073 (2004). [CrossRef] [PubMed]
  12. S. G. Bown, A. Z. Rogowska, D. E. Whitelaw, W. R. Lees, L. B. Lovat, P. Ripley, L. Jones, P. Wyld, A. Gillams, A. W. Hatfield, “Photodynamic therapy for cancer of the pancreas,” Gut 50, 549–557 (2002).
  13. S. Svanberg, S. Andersson-Engels, R. Berg, J. Johansson, K. Svanberg, “System for laser treatments of tumours,” Swedish patent950 1278 (6October1996).
  14. T. Johansson, M. Soto Thompson, M. Stenberg, C. af Klinteberg, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Feasibility study of a novel system for combined light dosimetry and interstitial photodynamic treatment of massive tumors,” Appl. Opt. 41, 1462–1468 (2002). [CrossRef] [PubMed]
  15. S. Andersson-Engels, N. Bendsoe, A. Johansson, T. Johansson, S. Pålsson, M. Soto Thompson, K. Svanberg, S. Svanberg, “Integrated system for interstitial photodynamic therapy,” in Therapeutic Laser Applications and Laser-Tissue Interactions, R. Steiner, ed., Proc. SPIE5142, 42–48 (2003). [CrossRef]
  16. M. Stenberg, M. Soto Thompson, T. Johansson, S. Pålsson, C. af Klinteberg, S. Andersson-Engels, U. Stenram, S. Svanberg, K. Svanberg, “Interstitial photodynamic therapy—diagnostic measurements and treatment in malignant experimental rat tumours,” in Optical Biopsy and Tissue Optics, I. J. Bigio, G. J. Mueller, G. J. Puppels, R. W. Steiner, K. Svanberg, eds., Proc. SPIE4161, 151–157 (2000). [CrossRef]
  17. M. Soto Thompson, T. Johansson, S. Pålsson, S. Andersson-Engels, S. Svanberg, N. Bendsoe, U. Stenram, K. Svanberg, J. Spigulis, A. Derjabo, J. Kapostins are preparing a manuscript to be called “Photodynamic therapy of basal cell carcinoma with multi-fibre contact light delivery.”
  18. C. af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, S. Svanberg, “Compact medical fluorosensor for minimally invasive tissue characterization,” Rev. Sci. Instrum. 76, 034303-1 (2005). [CrossRef]
  19. U. Gustafsson, S. Pålsson, S. Svanberg, “Compact fibre-optic fluorosensor using a continuous wave violet diode laser and an integrated spectrometer,” Rev. Sci. Instrum. 71, 3004–3006 (2000). [CrossRef]
  20. S. Svanberg, S. Andersson-Engels, K. Svanberg, “Divider for distributing radiation,” Swedish patent503 408 (14November2001).
  21. K. M. Case, P. F. Zweifel, Linear Transport Theory (Addison-Wesley, 1967).
  22. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997). [CrossRef] [PubMed]
  23. A. J. Welch, M. J. C. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, 1995). [CrossRef]
  24. K. König, H. Schneckenburger, A. Rück, R. Steiner, “In vivo photoproduct formation during PDT with ALA-induced endogenous porphyrins,” J. Photochem. Photobiol. B. 18, 287–290 (1993). [CrossRef] [PubMed]
  25. S. A. Prahl, “Tabulated molar extinction coefficient for hemoglobin in water,” Oregon Medical Laser Center (1998), omlc.ogi.edu/spectra/hemoglobin/summary.html .
  26. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999). [CrossRef] [PubMed]
  27. D. J. Robinson, H. S. de Bruijn, N. van der Veen, M. R. Stringer, S. B. Brown, W. M. Star, “Protoporphyrin IX fluorescence photobleaching during ALA-mediated photody-namic therapy of UVB-induced tumors in hairless mouse skin,” Photochem. Photobiol. 69, 61–70 (1999). [CrossRef] [PubMed]
  28. M. Soumya, T. H. Foster, “Carbogen breathing significantly enhances the penetration of red light in murine tumours in vivo,” Phys. Med. Biol. 49, 1891–1904 (2004). [CrossRef]
  29. D. J. Robinson, H. S. de Bruijn, N. van der Veen, M. R. Stringer, S. B. Brown, W. M. Star, “Fluorescence photobleaching of ALA-induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and irradiance and the resulting biological effect,” Photochem. Photobiol. 67, 140–149 (1998). [CrossRef] [PubMed]
  30. Q. Chen, B. C. Wilson, S. D. Shetty, M. S. Patterson, J. C. Cerny, F. W. Hetzel, “Changes in in vivo optical properties and light distributions in normal canine prostate during photodynamic therapy,” Radiat. Res. 147, 86–91 (1997). [CrossRef] [PubMed]
  31. A. M. K. Nilsson, R. Berg, S. Andersson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt. 34, 4609–4619 (1995). [CrossRef] [PubMed]
  32. J. P. A. Marijnissen, W. M. Star, “Quantitative light do-simetry in vitro and in vivo,” Lasers Med. Sci. 2, 235–242 (1987). [CrossRef]
  33. A. Johansson, T. Johansson, M. Soto Thompson, N. Bendsoe, K. Svanberg, S. Svanberg, S. Andersson-Engels are preparing a manuscript to be called “In vivo measurement of parameters of dosimetric importance during photodynamic therapy of thick skin tumors.”
  34. I. A. Boere, D. J. Robinson, H. S. de Bruijn, J. van den Boogert, H. W. Tilanus, H. J. C. M. Sterenborg, R. W. F. de Bruin, “Monitoring in situ dosimetry and protoporphyrin IX fluorescence photobleaching in the normal rat esophagus during 5-aminolevulinic acid photodynamic therapy,” Photochem. Photobiol. 78, 271–272 (2003). [CrossRef] [PubMed]
  35. F. B. Jensen, “Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport,” Acta Phys. Scand. 182, 215–227 (2004). [CrossRef]
  36. A. Curnow, J. C. Haller, S. G. Bown, “Oxygen monitoring during 5-aminolaevulinic acid induced photodynamic therapy in normal rat colon. Comparison of continuous and fractionated light regimes,” J. Photochem. Photobiol. B. 58, 149–155 (2000). [CrossRef]
  37. J. H. Woodhams, L. Kunz, S. G. Bown, A. J. MacRobert, “Correlation of real-time haemoglobin oxygen saturation monitoring during photodynamic therapy with microvascular effects and tissue necrosis in normal rat liver,” Br. J. Cancer 91, 788–794 (2004).
  38. Q. Chen, Z. Huang, H. Chen, H. Shapiro, “Improvement of tumour response by manipulation of tumour oxygenation during PDT,” Photochem. Photobiol. 76, 197–203 (2002). [CrossRef] [PubMed]
  39. D. R. Holmes, B. J. Davis, C. J. Bruce, R. A. Robb, “3D visualization, analysis, and treatment of the prostate using trans-urethral ultrasound,” Comput. Med. Imaging Graph. 27, 339–349 (2003). [CrossRef] [PubMed]
  40. L. K. Lee, C. Whitehurst, M. L. Pantelides, J. V. Moore, “An interstitial light assembly for photodynamic therapy in prostatic carcinoma,” Br. J. Urol. Int. 84, 821–826 (1999). [CrossRef]
  41. A. Curnow, B. W. McIlroy, M. J. Postle-Hacon, A. J. MacRobert, S. G. Bown, “Light dose fractionation to enhance photodynamic therapy using 5-aminolevulinic acid in the normal rat colon,” Photochem. Photobiol. 69, 71–76 (1999). [CrossRef] [PubMed]
  42. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited