OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 19 — Jul. 1, 2005
  • pp: 4053–4059

Frequency-multiplexed logic circuit based on a coherent optical neural network

Sotaro Kawata and Akira Hirose  »View Author Affiliations

Applied Optics, Vol. 44, Issue 19, pp. 4053-4059 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (986 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an adaptive logic circuit whose function can be controlled by optical carrier frequency modulation. The circuit learns the desired functions by adjusting the delay time at a spatial light modulator with a complex-valued Hebbian learning rule. After the learning, the circuit can switch its function all at once. A high degree of mechanical stability is achieved by spatial phase-difference coding. Two orthogonal phase components are detected in parallel spatially. Experiments demonstrate that the system works as an and circuit at a certain frequency and as an xor at another. The proposal will enhance the design of optical plastic cell architectures.

© 2005 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2920) Fiber optics and optical communications : Homodyning
(060.5060) Fiber optics and optical communications : Phase modulation
(200.3760) Optics in computing : Logic-based optical processing
(200.4700) Optics in computing : Optical neural systems
(260.3160) Physical optics : Interference

Original Manuscript: September 2, 2004
Revised Manuscript: January 7, 2005
Manuscript Accepted: January 12, 2005
Published: July 1, 2005

Sotaro Kawata and Akira Hirose, "Frequency-multiplexed logic circuit based on a coherent optical neural network," Appl. Opt. 44, 4053-4059 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Tanida, Y. Ichioka, “OPALS: optical parallel array logic system,” Appl. Opt. 25, 1565–1570 (1986). [CrossRef] [PubMed]
  2. J. Tanida, Y. Ichioka, “Programming of optical array logic. 1. Image data processing,” Appl. Opt. 27, 2926–2930 (1988). [CrossRef] [PubMed]
  3. A. W. Lohmann, “Polarization and optical logic,” Appl. Opt. 25, 1594–1597 (1986). [CrossRef] [PubMed]
  4. D. Psaltis, S. Lin, A. Yamamura, X. Gu, K. Hsu, D. Brady, “Optoelectronic implementations of neural networks,” IEEE Commun. Mag. 27(11), 37–40 (1989). [CrossRef]
  5. M. Takeda, T. Kishigami, “Complex neural fields with a Hopfield-like energy function and an analogy to optical fields generated in phase-conjugate resonators,” J. Opt. Soc. Am. A 9, 2182–2191 (1992). [CrossRef]
  6. H. Toyoda, N. Mukohzaka, Y. Suzuki, M. Ishikawa, “Adaptive optical processing system with optical associative memory,” Appl. Opt. 32, 1354–1358 (1993). [CrossRef] [PubMed]
  7. A. A. Cruz-Cabrera, M. Yang, G. Cui, E. C. Behrman, J. E. Steck, S. R. Skinner, “Reinforcement and backpropagation training for an optical neural network using self-lensing effects,” IEEE Trans. Neural Netw. 11, 1450–1457 (2000). [CrossRef]
  8. P. E. X. Silveira, G. S. Pati, K. H. Wagner, “Optical finite impulse response neural networks,” Appl. Opt. 41, 4162–4178 (2002). [CrossRef] [PubMed]
  9. See “EnLight256” (Lenslet Ltd., Herzelia Pituach, Israel, 2003); http://www.lenslet.com/ .
  10. U. Arad, E. Redmard, M. Shamay, A. Averboukh, S. Levit, U. Efron, “Development of a large high-performance 2-D array of GaAs–AlGaAs multiple quantum-well modulators,” IEEE Photon. Technol. Lett. 15, 1531–1533 (2003). [CrossRef]
  11. H. Takahashi, “Planar lightwave circuit devices for optical communication: present and future,” in Information Technologies and Communication, A. K. Dutta, A. A. S. Awwal, N. K. Dutta, K. Fujiura, eds., Proc. SPIE5246, 520–531 (2003).
  12. A. Goulet, M. Naruse, M. Ishikawa, “Simple integration technique to realize parallel optical interconnects: implementation of a pluggable two-dimensional optical data link,” Appl. Opt. 41, 5538–5551 (2002). [CrossRef] [PubMed]
  13. M. Chateauneuf, A. G. Kirk, “Determination of the optimum cluster parameters in a clustered free-space optical interconnect,” Appl. Opt. 42, 5906–5917 (2003). [CrossRef] [PubMed]
  14. N. Nishimura, Y. Awatsuji, T. Kubota, “Performance comparison and evaluation of options for arranging data in digital optical parallel computing,” Opt. Rev. 10, 523–533 (2003). [CrossRef]
  15. A. Hirose, R. Eckmiller, “Coherent optical neural networks that have optical-frequency-controlled behavior and generalization ability in the frequency domain,” Appl. Opt. 35, 836–843 (1996). [CrossRef] [PubMed]
  16. A. Hirose, ed., Complex-Valued Neural Networks: Theories and Applications (World Scientific, 2003).
  17. A. Hirose, M. Kiuchi, “Coherent optical associative memory system that processes complex-amplitude information,” IEEE Photon. Technol. Lett. 12, 564–566 (2000). [CrossRef]
  18. S. Kawata, A. Hirose, “Coherent lightwave associative memory system that possesses a carrier-frequency-controlled behavior,” Opt. Eng. 42, 2670–2675 (2003). [CrossRef]
  19. S. Kawata, A. Hirose, “Coherent optical neural network that learns desirable phase values in frequency domain by use of multiple optical-path differences,” Opt. Lett. 28, 2524–2526 (2003). [CrossRef] [PubMed]
  20. W. S. Wu, S. Campbell, P. C. Yeh, “Implementation of a photorefractive arithmetic logic unit for multiwavelength information processing,” J. Opt. Soc. Am. B 13, 2549–2557 (1996). [CrossRef]
  21. K. Nagami, K. Oguri, T. Shiozawa, H. Ito, R. Konishi, “Plastic cell architecture: a scalable device architecture for general-purpose reconfigurable computing,” IEICE Trans. Electron. E81-C(9), 1431–1437 (1998).
  22. N. Imlig, T. Shiozawa, R. Konishi, K. Oguri, K. Nagami, H. Ito, M. Inamori, H. Nakada, “Programmable dataflow computing on PCA,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E83-A(12), 2409–2416 (2000).
  23. Y. Oshita, T. Konishi, Y. Ichioka, “Ultrafast time-to-two-dimensional-space conversion system using SHG crystal,” Opt. Rev. 9, 141–145 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited