OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 19 — Jul. 1, 2005
  • pp: 4074–4085

Uncertainties of inherent optical properties obtained from semianalytical inversions of ocean color

Peng Wang, Emmanuel S. Boss, and Collin Roesler  »View Author Affiliations

Applied Optics, Vol. 44, Issue 19, pp. 4074-4085 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1658 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method to quantify the uncertainties in the in-water constituent absorption and backscattering coefficients obtained from an inversion of remotely sensed reflectance (rrs). We first find a set of positive inversion solutions within a given uncertainty range around the values of the inverted rrs. The uncertainties of the solutions are then computed based on the statistics of these solutions. We demonstrate the uncertainty calculation algorithm using a specific semianalytic inversion model applied to both a field and a simulated data set. When the associated uncertainties are taken into account, the inverted parameters are generally within the uncertainties of the measured (or simulated) parameters, highlighting the success of the inversion and the method to obtain uncertainties. The specific inversion we use, however, fails to retrieve two spectral parameters within a usable range. The method presented is general and can be applied to all existing semianalytical inversion algorithms.

© 2005 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors

Original Manuscript: November 16, 2004
Manuscript Accepted: January 3, 2005
Published: July 1, 2005

Peng Wang, Emmanuel S. Boss, and Collin Roesler, "Uncertainties of inherent optical properties obtained from semianalytical inversions of ocean color," Appl. Opt. 44, 4074-4085 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Preisendorfer, Hydrologic Optics, (U. S. Department of Commerce, U.S. GPO, Washington, D.C., 1976).
  2. C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).
  3. H. R. Gordon, O. B. Brown, M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975). [CrossRef] [PubMed]
  4. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Ocean. 22, 709–722 (1977). [CrossRef]
  5. A. Morel, “Available, usable and stored radiant energy in relation to marine photosynthesis,” Deep-Sea Res. 25, 673–688 (1978). [CrossRef]
  6. D. Stramski, R. A. Reynolds, M. Kahru, B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285, 239–242 (1999). [CrossRef] [PubMed]
  7. D. A. Siegel, S. Maritorena, D. A. Hansell, M. Lorenzi-Kayser, “Global distribution and dynamics of colored dissolved and detrital organic materials,” J. Geophys. Res. 107, (2002). [CrossRef]
  8. M. J. Behrenfeld, E. Boss, D. A. Siegel, D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space”Global Biogeochem. Cycles 19, GB1006, doi: (2005). [CrossRef]
  9. C. S. Roesler, M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, 13279–13294 (1995). [CrossRef]
  10. Z. P. Lee, K. L. Carder, T. G. Peacock, C. O. Davis, J. L. Mueller, “Method to derive ocean absorption coefficients from remote-sensing reflectance,” Appl. Opt. 35, 453–462 (1996). [CrossRef] [PubMed]
  11. F. E. Hoge, P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996). [CrossRef]
  12. A. H. Garver, D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation. 1. Time series from the Sargasso Sea,” J. Geophys, Res. 102, 18607–18625 (1997). [CrossRef]
  13. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys, Res. 104, 5403–5421 (1999). [CrossRef]
  14. S. Maritorena, D. A. Siegel, “Consistent merging of satellite ocean color data sets using a bio-optical model,” Remote Sens. Environ. 94, 429–440 (2005). [CrossRef]
  15. Z. P. Lee, http://www.ioccg.org/groups/lee_data.pdf (2004).
  16. Z. P. Lee, http://www.ioccg.org/groups/lee.html (2004).
  17. Z. P. Lee, http://www.ioccg.org/groups/OCAG_data.html (2204).
  18. G. C. Chang, T. D. Dickey, C. D. Mobley, E. Boss, W. S. Pegau, “Toward closure of upwelling radiance in coastal waters,” Appl. Opt. 42, 1574–1582 (2003). [CrossRef] [PubMed]
  19. C. D. Mobley, L. K. Sundman, E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002). [CrossRef] [PubMed]
  20. A. H. Barnard, W. S. Pegau, J. R. V. Zaneveld, “Global relationships of the inherent optical properties of the oceans,” J. Geophys, Res. 103, 24955–24968 (1998). [CrossRef]
  21. J. L. Mueller, G. S. Fargion, C. R. McClain, eds., Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Rev. 4, in Vol. IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols, TM-2003-211621/Rev4-Vol.IV (NASA, 2003), http://www.wetlabs.com/appnotes/Vol%201V%20v4%20final.pdf .
  22. H. R. Gordon, O. B. Brown, “The diffuse reflectance of the ocean: some effects of vertical structure,” Appl. Opt. 14, 2892–2895 (1975). [CrossRef] [PubMed]
  23. C. D. Mobley, “Notes on converting TSRB data to remote-sensing reflectance,” Sequoia Scientific, Inc., Bellevue, Wash. (personal communication, 2000).
  24. Z. P. Lee, K. L. Carder, R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002). [CrossRef] [PubMed]
  25. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys, Res. 93, 10909–10924 (1988). [CrossRef]
  26. R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  27. W. S. Pegau, D. Gray, J. RonaldV. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36, 6035–6046 (1997). [CrossRef] [PubMed]
  28. A. M. Ciotti, M. R. Lewis, J. J. Cullen, “Assessment of the relationship between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47, 404–417 (2002). [CrossRef]
  29. C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1501–1523 (1989). [CrossRef]
  30. D. Stramski, A. Bricaud, A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001). [CrossRef]
  31. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, eds. (Academic, New York, 1974), pp. 1–24.
  32. E. Boss, W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40, 5503–5507 (2001). [CrossRef]
  33. D. Stramski, E. Boss, D. Bogucki, K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27–56 (2004). [CrossRef]
  34. E. Boss, D. Stramski, T. Bergmann, W. S. Pegau, M. Lewis, “Why should we measure the optical backscattering coefficient?” Oceanography 17, 44–49 (2004). [CrossRef]
  35. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, 1992), pp. 655–675.
  36. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge U. Press, Cambridge, U.K., 1994). [CrossRef]
  37. A. Bricaud, A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25, 571–580 (1986). [CrossRef] [PubMed]
  38. R. F. Davis, C. C. Moore, J. R. V. Zaneveld, J. M. Napp, “Reducing the effects of fouling on chlorophyll estimates derived from long-term deployments of optical instruments,” J. Geophys.Res. 102, 5851–5855 (1997). [CrossRef]
  39. E. Boss, M. S. Twardowski, S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40, 4885–4893 (2001). [CrossRef]
  40. C. Roesler, E. Boss, “A novel ocean color inversion model: retrieval of beam attenuation and particle size distribution,” Geophys. Res. Let. 30, (2003). [CrossRef]
  41. E. Boss, E. W. S. Pegau, M. Lee, M. S. Twardowski, E. Shybanov, G. Korotaev, F. Baratange, “The particulate backscattering ratio at LEO 15 and its use to study particles composition and distribution,” J. Geophys. Res. 109, (2004). [CrossRef]
  42. M. Sydor, B. D. Wolz, A. M. Thralowa, “Spectral analysis of bulk reflectance from coastal waters: deconvolution of diffuse spectra due to scattering and absorption by coastal water,” J. Coast. Res. 18, 352–361 (2002).
  43. D. Pozdnyakov, H. Grassl, “Colour of Inland and Coastal Waters,” (Springer, Chichester, 2003).
  44. S. Maritorena, D. A. Siegel, A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705–2714 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited