OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 2 — Jan. 10, 2005
  • pp: 183–189

Effect of mask-roughness on printed contact-size variation in extreme-ultraviolet lithography

Patrick P. Naulleau  »View Author Affiliations


Applied Optics, Vol. 44, Issue 2, pp. 183-189 (2005)
http://dx.doi.org/10.1364/AO.44.000183


View Full Text Article

Acrobat PDF (491 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Relying on reflective mask technology, extreme-ultraviolet (EUV) lithography is particularly vulnerable to mask substrate roughness. Previous research has shown mask roughness to play a significant role in printed line-edge roughness (LER). Here the analysis of mask-roughness effects is extended to printed contact-size variations. Unlike LER, illumination partial coherence is found to have little affect on the results for contacts that are near the diffraction limit. Analysis shows that, given the current state-of-the-art EUV mask, mask roughness has a significant effect on the process window for small contacts. The analysis also shows that a significant portion of the contact-size variation observed in recent 0.1-numerical-aperture EUV exposures can be attributed to the mask-roughness effect studied here.

© 2005 Optical Society of America

OCIS Codes
(030.5770) Coherence and statistical optics : Roughness
(030.6140) Coherence and statistical optics : Speckle
(110.3960) Imaging systems : Microlithography
(110.4980) Imaging systems : Partial coherence in imaging
(260.7200) Physical optics : Ultraviolet, extreme

Citation
Patrick P. Naulleau, "Effect of mask-roughness on printed contact-size variation in extreme-ultraviolet lithography," Appl. Opt. 44, 183-189 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-2-183


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Stulen and D. Sweeney, "Extreme ultraviolet lithography," IEEE J. Quantum Electron. 35, 694-699 (1999).
  2. H. Meiling, J. Benschop, R. Hartman, P. Kürz, P. Høghøj, R. Geyl, and N. Harned, "EXSTATIC: ASML's alpha-tool development for EUVL," in Emerging Lithographic Technologies VI, R. L. Engelstad, ed., Proc. SPIE 4688, 1-10 (2002).
  3. K. Hamamoto, T. Watanabe, H. Hada, H. Komano, S. Kishimura, S. Okazaki, and H. Kinoshita, "Fine pattern replication on 10×10-mm exposure area using the ETS-1 laboratory tool in HIT," in Emerging Lithographic Technologies VI, R. L. Engelstad, ed., Proc. SPIE 4688, 664-671 (2002).
  4. S. Lee, R. Bristol, and J. Bjorkholm, "Shot noise effect on printing small contacts in EUVL," in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE 5037, 890-899 (2003).
  5. N. Beaudry and T. Milster, "Effects of mask roughness and condenser scattering in EUVL systems," in Emerging Lithographic Technologies III, Y. Vladimirsky, ed., Proc. SPIE 3676, 653-662 (1999).
  6. N. Beaudry and T. Milster, "Effects of object roughness on partially coherent image formation," Opt. Lett. 25, 454-456 (2000).
  7. P. Naulleau, "Relevance of mask-roughness-induced printed line-edge roughness in recent and future extreme-ultraviolet lithography tests," Appl. Opt. 434025-4032 (2004).
  8. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 7, pp. 286-360.
  9. E. Gullikson, C. Cerjan, D. Stearns, P. Mirkarimi, and D. Sweeney, "Practical approach for modeling extreme ultraviolet lithography mask defects," J. Vac. Sci. Technol. B 20, 81-86 (2002).
  10. J. H. Underwood and T. W. Barbee, Jr., "Layered synthetic microstructures as Bragg diffractors for x rays and extreme ultraviolet: theory and predicted performance," Appl. Opt. 20, 3027-3034 (1981).
  11. D. Stearns, "Stochastic model for thin film growth and erosion," Appl. Phys. Lett. 62, 1745-1747 (1993).
  12. D. Stearns and E. Gullikson, "Nonspecular scattering from extreme ultraviolet multilayer coatings," Physica B 283, 84-91 (2000).
  13. Z. Zhengrong, K. Lucas, J. Cobb, S. Hector, and A. Strojwas, "Rigorous EUV mask simulator using 2D and 3D waveguide methods," in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE 5037, 494-503 (2003).
  14. A. Erdmann, C. Kalus, T. Schmoller, and A. Wolter, "Efficient simulation of light diffraction from three-dimensional EUV masks using field decomposition techniques," in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE 5037, 482-493 (2003).
  15. T. Pistor, T. Y. Deng, and A. Neureuther, "Extreme ultraviolet mask defect simulation: Low-profile defects," J. Vac. Sci. Technol. B 18, 2926-2929 (2000).
  16. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Appendix B, 533-538.
  17. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 2, pp. 7-59.
  18. P. Mirkarimi, E. Spiller, D. Stearns, V. Sperry, and S. Baker, "An ion-assisted Mo-Si deposition process for planarizing reticle substrates for extreme ultraviolet lithography," IEEE J. Quantum Electron. 37, 1514-1516 (2001).
  19. T. Ogawa, M. Ito, H. Yamanashi, H. Hoko, E. Hoshino, and S. Okazaki, "Simulation studies of roughness-smoothing effect of molybdenum/silicon multilayer coating based on resputtering model," in Emerging Lithographic Technologies VI, R. L. Engelstad, ed., Proc. SPIE 4688, 716-724 (2002).
  20. S. Hector, "EUVL masks: requirements and potential solutions," in Emerging Lithographic Technologies VI, R. L. Engelstad, ed., Proc. SPIE 4688, 134-149 (2002).
  21. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 7, pp. 286-360.
  22. P. Mirkarimi, E. Spiller, S. Baker, V. Sperry, D. Stearns, and E. Gullikson, "Developing a viable multilayer coating process for extreme ultraviolet lithography relicles," J. Microlithogr., Microfabr., Microsyst. 3, 139-145 (2004).
  23. E. Spiller, S. Baker, P. Mirkarimi, V. Sperry, E. Gullikson, and D. Stearns, "High-performance Mo-Si multilayer coatings for extreme-ultraviolet lithography by ion-beam deposition," Appl. Opt. 42, 4049-4058 (2003).
  24. PROLITH is a registered trademark of KLA-Tencor Corporation, 160 Rio Robles, San Jose, Calif. 95134.
  25. SOLID-C is a registered trademark of SIGMA-C GmbH, Thomas-Dehler-Str. 9, 81737 München, Germany.
  26. P. Naulleau, K. Goldberg, E. Anderson, D. Attwood, P. Batson, J. Bokor, P. Denham, E. Gullikson, B. Harteneck, B. Hoef, K. Jackson, D. Olynick, S. Rekawa, F. Salmassi, K. Blaedel, H. Chapman, L. Hale, P. Mirkarimi, R. Soufli, E. Spiller, D. Sweeney, J. Taylor, C. Walton, D. O'Connell, R. Stulen, D. Tichenor, C. Gwyn, P. Yan, and G. Zhang, "Sub-70-nm EUV lithography at the Advanced Light Source Static Microfield Exposure Station using the ETS Set-2 Optic," J. Vac. Sci. Technol. B 20, 2829-2833 (2002).
  27. D. W. Sweeney, R. Hudyma, H. N. Chapman, and D. Shafer, "EUV optical design for a 100-nm CD imaging system," in Emerging Lithographic Technologies II, Y. Vladimirsky, ed., Proc. SPIE 3331, 2-10 (1998).
  28. D. O'Connell, S. Lee, D. Tichenor, W. Ballard, L. Bernardez, J. Goldsmith, S. Haney, K. Jefferson, T. Johnson, A. Leung, W. Replogle, J. Bjorkholm, E. Panning, P. Naulleau, H. Chapman, S. Wurm, G. Kubiak, and C. Gwyn, "Lithographic characterization of improved projection optics in the EUVL Engineering Test Stand," in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE 5037, 83-94 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited