OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 2 — Jan. 10, 2005
  • pp: 266–270

Three-longitudinal-mode He–Ne laser frequency stabilized at 633 nm by thermal phase locking of the secondary beat frequency

Jin Yong Yeom and Tai Hyun Yoon  »View Author Affiliations

Applied Optics, Vol. 44, Issue 2, pp. 266-270 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (120 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a simple scheme for thermal frequency stabilization of a three-longitudinal-mode He–Ne laser at 633 nm with improved short-term (5 × 10−11 at 1-s average time) and long-term (124-kHz standard deviation for 10 h) frequency stability. A stabilized output power of 3 mW was readily obtained from the central mode by polarization-mode selection. The optical frequency of the central mode could be precisely tuned by an external frequency reference over 160 MHz with high precision or could be optically phase locked to a reference laser by use of a thermal frequency-stabilization circuit and an external acousto-optic modulator. The laser will be useful in various applications for which a laser source with high power and frequency stability is necessary.

© 2005 Optical Society of America

OCIS Codes
(140.1340) Lasers and laser optics : Atomic gas lasers
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.7300) Lasers and laser optics : Visible lasers

Original Manuscript: March 29, 2004
Revised Manuscript: August 10, 2004
Manuscript Accepted: September 28, 2004
Published: January 10, 2005

Jin Yong Yeom and Tai Hyun Yoon, "Three-longitudinal-mode He–Ne laser frequency stabilized at 633 nm by thermal phase locking of the secondary beat frequency," Appl. Opt. 44, 266-270 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Yokoyama, T. Araki, S. Yokoyama, N. Suzuki, “A sub-nanometer heterodyne interferometric system with improved phase sensitivity using a three-longitudinal-mode He–Ne lasser,” Meas. Sci. Technol. 12, 157–162 (2001). [CrossRef]
  2. J. Lawall, J. M. Pedulla, Y. L. Coq, “Ultrastable laser array at 633 nm for real-time dimensional metrology,” Rev. Sci. Instrum. 72, 2879–2888 (2001). [CrossRef]
  3. M.-S. Kim, S.-W. Kim, “Two-longitudinal-mode He–Ne laser for heterodyne interferometers to measure displacement,” Appl. Opt. 41, 5938–5942 (2002). [CrossRef] [PubMed]
  4. I.-J. Eom, K.-C. Kim, H.-S. Suh, “Distance measurement method using the two intermode beat frequencies of a three-longitudinal mode He–Ne laser,” Rev. Sci. Instrum. 68, 4612–4614 (1997). [CrossRef]
  5. T. Araki, S. Yokoyama, N. Suziki, “Simple optical distance meter using an intermode-beat modulation of a He–Ne laser and an electrical-heterodyne technique,” Rev. Sci. Instrum. 65, 1883–1888 (1994). [CrossRef]
  6. H. S. Suh, T. H. Yoon, M. S. Chung, O. C. Choi, “Frequency and power stabilization of a three longitudinal mode He–Ne laser using secondary beat frequency,” Appl. Phys. Lett. 63, 2027–2029 (1993). [CrossRef]
  7. J. Ishikawa, “Accurate frequency control of an internal-mirror He–Ne laser by means of a radiation-heating system,” Appl. Opt. 34, 6095–6098 (1995). [CrossRef] [PubMed]
  8. T. Yasui, T. Araki, N. Suzuki, “Accurate stabilization of a 3 mW single-mode output He–Ne laser by intermittent frequency offset locking to an iodine stabilized He–Ne laser,” Opt. Rev. 4, 675–682 (1997). [CrossRef]
  9. P. Y. Chien, C.-L. Pan, “A thermal phase-locked loop for frequency stabilization of internal-mirror He–Ne lasers (λ = 0.633 μm),” Rev. Sci. Instrum. 62, 933–935 (1991). [CrossRef]
  10. T. H. Yoon, J. Ye, J. L. Hall, J.-M. Chartier, “Absolute frequency measurement of the iodine-stabilized He–Ne laser at 633 nm,” Appl. Phys. B 72, 221–226 (2001). [CrossRef]
  11. A. E. Siegman, “Oscillation frequency and frequency pulling,” in Lasers (Oxford U. Press, Oxford, UK, 1986), pp. 462–473.
  12. S. Yokohama, T. Araki, N. Suzuki, “Frequency stabilization by frequency pulling for single-mode oscillation of He–Ne laser at maximum intensity,” Rev. Sci. Instrum. 66, 2788–2795 (1995). [CrossRef]
  13. N. Mio, M.-F. Ko, W.-T. Ni, S. S. Pan, A. Araya, S. Moriwaki, K. Tsubono, “Design of a stabilized He–Ne laser by using a thin-film heater,” Appl. Opt. 32, 5944–5947 (1993). [CrossRef] [PubMed]
  14. J. L. Hall, T. W. Hänsch, “External dye-laser frequency stabilizer,” Opt. Lett. 9, 502–504 (1984). [CrossRef] [PubMed]
  15. M. S. Taubman, J. L. Hall, “Cancellation of laser dither modulation from optical frequency standards,” Opt. Lett. 25, 311–313 (2000). [CrossRef]
  16. M. Kourogi, B. Widiyatmoko, K. Imai, T. Shimizu, M. Ohtsu, “Accurate relative frequency cancellation between two independent lasers,” Opt. Lett. 24, 16–18 (1999). [CrossRef]
  17. J. L. Hall, L.-S. Ma, G. Kramer, “Principles of optical phase-locking: applications to internal mirror He–Ne lasers phase-locked via fast control of the discharge current,” IEEE J. Quantum Electron. 23, 427–437 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited