OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 20 — Jul. 10, 2005
  • pp: 4186–4204

Sensitivity metric approach for retrieval of aerosol properties from multiangular and multispectral polarized radiances

Grzegorz Miecznik, Rainer Illing, Shelley Petroy, and Irina N. Sokolik  »View Author Affiliations

Applied Optics, Vol. 44, Issue 20, pp. 4186-4204 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (4711 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Linearly polarized radiation is sensitive to the microphysical properties of aerosols, namely, to the particle-size distribution and refractive index. The discriminating power of polarized radiation increases strongly with the increasing range of scattering angles and the addition of multiple wavelengths. The polarization and directionality of the Earth’s reflectances (POLDER) missions demonstrate that some aerosol properties can be successfully derived from spaceborne polarimetric, multiangular measurements at two visible wavelengths. We extend the concept to analyze the retrieval capabilities of a spaceborne instrument with six polarimetric channels at 412, 445, 555, 865, 1250, and 2250 nm, measuring approximately 100 scattering angles covering a range between 50 and 150 deg. Our focus is development of an analysis methodology that can help quantify the benefits of such multiangular and multispectral polarimetric measurements. To that goal we employ a sensitivity metric approach in a framework of the principal-component analysis. The radiances and noise used to construct the sensitivity metric are calculated with the realistic solar flux for representative orbital viewing geometries, accounting for surface reflection from the ground, and statistical and calibration errors of a notional instrument. Spherical aerosol particles covering a range of representative microphysical properties (effective radius, effective variance, real and imaginary parts of the refractive index, single-scattering albedo) are considered in the calculations. We find that there is a limiting threshold for the effective size (approximately 0.7 µm), below which the weak scattering intensity results in a decreased signal-to-noise ratio and minimal polarization sensitivity, precluding reliable aerosol retrievals. For such small particles, close to the Rayleigh scattering limit, the total intensity provides a much stronger aerosol signature than the linear polarization, inspiring retrieval when the combined signals of intensities and the polarization fraction are used. We also find a strong correlation between aerosol parameters, in particular between the effective size and the variance, which forces one to simultaneously retrieve at least these two parameters.

© 2005 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(280.1100) Remote sensing and sensors : Aerosol detection

Original Manuscript: September 8, 2004
Revised Manuscript: January 14, 2005
Manuscript Accepted: February 7, 2005
Published: July 10, 2005

Grzegorz Miecznik, Rainer Illing, Shelley Petroy, and Irina N. Sokolik, "Sensitivity metric approach for retrieval of aerosol properties from multiangular and multispectral polarized radiances," Appl. Opt. 44, 4186-4204 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, D. Xiaosu, eds., Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge U. Press, 2001).
  2. Y. J Kaufman, D. Tanre, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, P. M. Teillet, “Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect,” J. Geophys. Res. 102, 16815–16830 (1997). [CrossRef]
  3. L. L. Stowe, A. M. Ignatov, R. R. Singh, “Development, validation, and potential enhancements to the second-generation operational aerosol product at the national environmental satellite, data, and information service of the national oceanic and atmospheric administration,” J. Geophys. Res. 102, 16923–16934 (1997). [CrossRef]
  4. M. D. King, Y. Kaufman, W. P. Menzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992). [CrossRef]
  5. D. J. Diner, C. J. Bruegge, J. V. Martonchik, G. W. Bothwell, E. D. Danielson, V. G. Ford, L. E. Hovland, K. L. Jones, M. L. White, “A multi-angle imaging spectroradiometer for terrestrial remote sensing from the Earth observing system,” Int. J. Imaging Syst. Technol. 3, 92–107 (1991). [CrossRef]
  6. P. Goloub, D. Tanré, J.-L. Deuzé, M. Herman, A. Marchand, F.-M. Bréon, “Validation of the first algorithm applied for deriving the aerosol properties over ocean using the POLDER/ADEOS measurements,” IEEE Trans. Geosci. Remote Sensing 37, 1586–1596 (1999). [CrossRef]
  7. R. Kahn, P. Banerjee, D. McDonald, D. J. Diner, “Sensitivity of multiangle imaging to aerosol optical depth and pure-particle size distribution and composition over ocean,” J. Geophys. Res. 103, 32195–32213 (1998). [CrossRef]
  8. R. Kahn, P. Banerjee, D. McDonald, “Sensitivity of multiangle imaging to natural mixtures of aerosol over ocean,” J. Geophys. Res. 106, 18219–18238 (2001). [CrossRef]
  9. M. I. Mishchenko, L. D. Travis, “Light scattering by polydisperse, rotationally symmetric nonspherical particles: linear polarization,” J. Quant. Spectrosc. Radiat. Transfer 51, 759–778 (1994). [CrossRef]
  10. M. I. Mishchenko, I. V. Geogdzhayev, L. Liu, J. A. Ogren, A. A. Lacis, W. B. Rossow, J. W. Hovenier, H. Volten, O. Muñoz, “Aerosol retrievals from AVHRR radiances: effects of particle nonsphericity and absorption and an updated long-term global climatology of aerosol properties,” J. Quant. Spectrosc. Radiat. Transfer 79/80, 953–972 (2003). [CrossRef]
  11. P. Chylek, G. Videen, W. Geldart, S. Dobbie, W. Tso, “Effective medium approximation for heterogeneous particles,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M. Mishchenko, ed. (Academic, 2000), pp. 273–308. [CrossRef]
  12. O. Dubovik, B. Holben, T. F. Eck, A. Smimov, Y. J. Kaufman, M. D. King, D. Tanre, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002). [CrossRef]
  13. I. N. Sokolik, A. Andronova, T. C. Johnson, “Complex refractive index of atmospheric dust aerosol,” Atmos. Environ. Part A 27, 2495–2502 (1993). [CrossRef]
  14. I. N. Sokolik, O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104(D8), 9423–9444 (1999). [CrossRef]
  15. K. F. Evans, G. L. Stephens, “A new polarized atmospheric radiative-transfer model,” J. Quant. Spectros. Radiat. Transfer 45, 413–423 (1991). [CrossRef]
  16. M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, E. P. Shettle, “Monitoring of aerosol forcing from space: analysis of measurement requirements,” J. Quant. Spectrosc. Radiat. Transfer 88, 149–161 (2004). [CrossRef]
  17. Aerosol Polarimetry Sensor, “Sensor requirements document” for National Polar-Orbiting Operational Environmental Satellite System (NPOESS), http://www.ipo.noaa.qov .
  18. O. Dubovik, A. Smimov, B. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, I. Slutsker, “Accuracy assessments of aerosol optical properties retrieved from Aerosol Network (AERO-NET) Sun and sky radiance measurements,” J. Geophys. Res. 105, 9791–9806 (2000). [CrossRef]
  19. M. I. Mishchenko, L. D. Travis, “Satellite retrieval of aerosol properties over ocean using polarization as well as intensity of reflected sunlight,” J. Geophys. Res. 102, 16989–17013 (1997). [CrossRef]
  20. C. Bohren, D. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  21. T. Zhang, H. R. Gordon, “Columnar aerosol properties over oceans by combining surface and aircraft measurements: sensitivity study,” Appl. Opt. 36, 2650–2662 (1997). [CrossRef] [PubMed]
  22. T. Zhang, H. R. Gordon, “Retrieval of elements of the columnar aerosol scattering phase matrix from polarized sky radiance over the ocean: simulations,” Appl. Opt. 36, 7948–7959 (1997). [CrossRef]
  23. H. Yang, H. R. Gordon, “Retrieval of the columnar aerosol phase function and single-scattering albedo from sky radiance over land: simulations,” Appl. Opt. 37, 978–997 (1998). [CrossRef]
  24. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974). [CrossRef]
  25. A. L. Quijano, I. N. Sokolik, O. B. Toon, “Influence of the aerosol vertical distribution on the retrievals of aerosol optical depth from satellite radiance measurements,” Geophys. Res. Lett. 27, 3457–3460 (2000). [CrossRef]
  26. J. L. Deuze, F. M. Breon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, D. Tanre, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106, 4913–4926 (2001) and references therein. [CrossRef]
  27. D. P. Veselov, O. I. Popov, G. I. Seleznev, “On the polarization of upward radiation in the 0.8–2.2 µm spectral region,” Izv. Atmos. Ocean. Phys. 21, 997–999 (1985).
  28. M. Herman, J. L. Deuze, C. Cevaus, P. Goloub, F. M. Breon, D. Tanre, “Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements,” J. Geophys. Res. 102, 17039–17049 (1997). [CrossRef]
  29. B. Cairns, L. D. Travis, E. E. Russell, “Polarization: ground-based upward-looking and aircraft/satellite-based downward-looking measurements,” in Satellite Remote Sensing of Clouds and the Atmosphere II, J. D. Haigh, ed., Proc. SPIE3220, 103–114 (1997). [CrossRef]
  30. M. Wang, H. R. Gordon, “Retrieval of the columnar aerosol phase function and single-scattering albedo from sky radiance over the ocean: simulations,” Appl. Opt. 32, 4598–4609 (1993). [CrossRef] [PubMed]
  31. J. E. Hansen, J. W. Hovenier, “Interpretation of the polarization of Venus,” J. Atmos. Sci. 31, 1137–1160 (1974). [CrossRef]
  32. G. A. d’Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols—Global Climatology and Radiative Characteristics (A. Deepak, 1991), p. 561.
  33. E. F. Vermote, D. Tanre, J. L. Deuze, M. Herman, J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum (6S), an overview,” IEEE Trans. Geosci. Remote Sens. 35, 675–686 (1997). [CrossRef]
  34. L. Liu, M. I. Mishchenko, S. Menon, A. Macke, A. A. Lacis, “The effect of black carbon on scattering and absorption of solar radiation by cloud droplets,” J. Quant. Spectrosc Radiat. Transfer 74, 195–204 (2002). [CrossRef]
  35. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
  36. J. Chowdhary, B. Cairns, L. D. Travis, “Retrieval of aerosol properties over the ocean using multispectral and multiangular photopolarimetric measurements from the Research Scanning Polarimeter,” Geophys. Res. Lett. 28, 243–246 (2001). [CrossRef]
  37. F.-M. Breon, P. Goloub, “Cloud droplet effective radius from spaceborne polarization measurements,” Geophys. Res. Lett. 25, 1879–1882 (1998). [CrossRef]
  38. B. Cairns, L. D. Travis, E. E. Russell, “Research Scanning Polarimeter Calibration and ground-based measurements” in Polarization: Measurements, Analysis and Remote Sensing II, D. H. Goldstein, D. B. Casnault, eds., Proc. SPIE3754, 186–196 (1999).
  39. NPOESS Visible/Infrared Imager Radiometer Suite (VIIRS), in VIIRS Algorithm Theoretical Basis Document(ATBD): Version 1.3 (2000), http://npoesslib.ipo.noaa.gov/ .
  40. P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 3rd ed. (McGraw-Hill, 2003).
  41. C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–624 (1976). [CrossRef]
  42. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, 2002), p. 238.
  43. D. Tanre, M. Herman, Y. J. Kaufman, “Information on aerosol size distribution contained in solar reflected spectral radiances,” J. Geophys. Res. 101, 19043–19060 (1996). [CrossRef]
  44. ASTM E490-00a, “Standard solar constant and zero air mass solar spectral irradiance tables” (American Society for Testing and Materials, 2000).
  45. F. Zhao, Z. Gong, H. Hu, M. Tanaka, T. Hayasaka, “Simultaneous determination of the aerosol complex refractive index of refraction and size distribution from scattering measurements of polarized light,” Appl. Opt. 36, 7992–8001 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited