OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 20 — Jul. 10, 2005
  • pp: 4281–4290

Real-time absorption and scattering characterization of slab-shaped turbid samples obtained by a combination of angular and spatially resolved measurements

Jan S. Dam, Nazila Yavari, Søren Sørensen, and Stefan Andersson-Engels  »View Author Affiliations

Applied Optics, Vol. 44, Issue 20, pp. 4281-4290 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (706 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a fast and accurate method for real-time determination of the absorption coefficient, the scattering coefficient, and the anisotropy factor of thin turbid samples by using simple continuous-wave noncoherent light sources. The three optical properties are extracted from recordings of angularly resolved transmittance in addition to spatially resolved diffuse reflectance and transmittance. The applied multivariate calibration and prediction techniques are based on multiple polynomial regression in combination with a Newton–Raphson algorithm. The numerical test results based on Monte Carlo simulations showed mean prediction errors of approximately 0.5% for all three optical properties within ranges typical for biological media. Preliminary experimental results are also presented yielding errors of approximately 5%. Thus the presented methods show a substantial potential for simultaneous absorption and scattering characterization of turbid media.

© 2005 Optical Society of America

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.7050) Medical optics and biotechnology : Turbid media

Original Manuscript: October 25, 2004
Revised Manuscript: February 24, 2005
Manuscript Accepted: February 25, 2005
Published: July 10, 2005

Jan S. Dam, Nazila Yavari, Søren Sørensen, and Stefan Andersson-Engels, "Real-time absorption and scattering characterization of slab-shaped turbid samples obtained by a combination of angular and spatially resolved measurements," Appl. Opt. 44, 4281-4290 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. J. Welch, M. J. C. van Gemert, W. M. Star, B. C. Wilson, “Overview of tissue optics,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, 1995), pp. 15–46. [CrossRef]
  2. J. W. Feather, D. J. Ellis, G. Leslie, “A portable reflectometer for the rapid quantification of cutaneous haemoglobin and melanin,” Phys. Med. Biol. 33, 711–722 (1988). [CrossRef] [PubMed]
  3. S. L. Jacques, “Reflectance spectroscopy with optical fiber devices and transcutaneous bilirubinometers,” in Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, A. M. Verga Scheggi, S. Martellucci, A. N. Chester, R. Pratesi, eds. (Kluwer Academic, 1996), pp. 83–94. [CrossRef]
  4. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998). [CrossRef]
  5. S. L. Jacques, “Origins of tissue optical properties in the UVA, visible, and NIR regions,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1996), pp. 364–369.
  6. A. M. K. Nilsson, R. Berg, S. Andersson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt. 34, 4609–4619 (1995). [CrossRef] [PubMed]
  7. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999). [CrossRef] [PubMed]
  8. S. R. Kamath, C. V. Morr, T. Schenz, “Laser light scattering and microscopic properties of milkfat globules in Swiss cheese whey low density lipid-containing fraction,” Lebensm.-Wiss. Technol. 31, 274–278 (1998). [CrossRef]
  9. Y. Woo, Y. Terazawa, J. Y. Chen, C. Iyo, F. Terada, S. Kawano, “Development of a new measurement unit (MilkSpec-1) for rapid determination of fat, lactose, and protein in raw milk using near-infrared transmittance spectroscopy,” Appl. Spectrosc. 56, 599–604 (2002). [CrossRef]
  10. H. Martens, R. Steiner, “Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy,” J. Appl. Physiol. 9, 625–635 (1991).
  11. H. Schnablegger, O. Glatter, “Sizing of colloidal particles with light scattering: corrections for beginning multiple scattering,” Appl. Opt. 34, 3489–3501 (1995). [CrossRef] [PubMed]
  12. A. A. Kokhanovsky, R. Weichert, “Multiple light scattering in laser particle sizing,” Appl. Opt. 40, 1507–1513 (2001). [CrossRef]
  13. M. Peake, B. Mazzachi, A. Fudge, R. Bais, “Bilirubin measured on a blood gas analyser: a suitable alternative for near-patient assessment of neonatal jaundice?” Ann. Clin. Biochem. 38, 533–540 (2001). [CrossRef] [PubMed]
  14. B. Rolinski, H. Küster, B. Ugele, R. Gruber, K. Horn, “Total bilirubin measurement by photometry on a blood gas analyzer: potential for use in neonatal testing at the point of care,” Clin. Chem. 47, 1845–1847 (2001). [PubMed]
  15. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993). [CrossRef] [PubMed]
  16. A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H. J. Schwarzmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1998). [CrossRef]
  17. J. S. Dam, T. Dalgaard, P. E. Fabricius, S. Andersson-Engels, “Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,” Appl. Opt. 39, 1202–1209 (2000). [CrossRef]
  18. S. Willmann, H. J. Schwarzmaier, A. Terenji, I. V. Yaroslavsky, P. Hering, “Quantitative microspectrophotometry in turbid media,” Appl. Opt. 38, 4904–4913 (1999). [CrossRef]
  19. S. V. Chapra, R. P. Canale, Numerical Methods for Engineers (McGraw-Hill, 1997).
  20. L. Wang, S. L. Jacques, L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995). [CrossRef] [PubMed]
  21. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  22. J. E. Jackson, “Principal component and factor analysis: Part I. Principal components,” J. Quality Technol. 12, 201–213 (1980).
  23. J. Swartling, J. S. Dam, S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42, 4612–4620 (2003). [CrossRef] [PubMed]
  24. A. Pifferi, P. Taroni, G. Valentini, S. Andersson-Engels, “Real-time method for fitting time-resolved reflectance and transmittance measurements with a Monte Carlo model,” Appl. Opt. 37, 2774–2780 (1998). [CrossRef]
  25. J. S. Dam, C. B. Pedersen, T. Dalgaard, P. Aruna, S. Andersson-Engels, “Fiber-optic probe for noninvasive realtime determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40, 1155–1164 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited