OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 20 — Jul. 10, 2005
  • pp: 4291–4305

Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma

Dizem Arifler, Richard A. Schwarz, Sung K. Chang, and Rebecca Richards-Kortum  »View Author Affiliations

Applied Optics, Vol. 44, Issue 20, pp. 4291-4305 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1217 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Reflectance spectroscopy is a promising technology for detection of epithelial precancer. Fiber-optic probes that selectively collect scattered light from both the epithelium and the underlying stroma are likely to improve diagnostic performance of in vivo reflectance spectroscopy by revealing diagnostic features unique to each layer. We present Monte Carlo models with which to evaluate fiber-optic probe geometries with respect to sampling depth and depth resolution. We propose a probe design that utilizes half-ball lens coupled source and detector fibers to isolate epithelial scattering from stromal scattering and hence to resolve spectral information from the two layers. The probe is extremely compact and can provide easy access to different organ sites.

© 2005 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

Original Manuscript: November 29, 2004
Revised Manuscript: February 16, 2005
Manuscript Accepted: February 21, 2005
Published: July 10, 2005

Dizem Arifler, Richard A. Schwarz, Sung K. Chang, and Rebecca Richards-Kortum, "Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma," Appl. Opt. 44, 4291-4305 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995). [CrossRef] [PubMed]
  2. F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342–345 (1998). [CrossRef] [PubMed]
  3. A. Garcia-Uribe, N. Kehtarnavaz, G. Marquez, V. Prieto, M. Duvic, L. V. Wang, “Skin cancer detection by spectroscopic oblique-incidence reflectometry: classification and physiological origins,” Appl. Opt. 43, 2643–2650 (2004). [CrossRef] [PubMed]
  4. I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000). [CrossRef] [PubMed]
  5. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999). [CrossRef]
  6. M. G. Müller, T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone, R. R. Dasari, S. M. Shapshay, M. S. Feld, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma,” Cancer 97, 1681–1692 (2003). [CrossRef] [PubMed]
  7. R. J. Nordstrom, L. Burke, J. M. Niloff, J. F. Myrtle, “Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,” Lasers Surg. Med. 29, 118–127 (2001). [CrossRef] [PubMed]
  8. I. Georgakoudi, E. E. Sheets, M. G. Müller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002). [CrossRef] [PubMed]
  9. Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt. 7, 587–594 (2002). [CrossRef] [PubMed]
  10. W. K. Huh, R. M. Cestero, F. A. Garcia, M. A. Gold, R. S. Guido, K. McIntyre-Seltman, D. M. Harper, L. Burke, S. T. Sum, R. F. Flewelling, R. D. Alvarez, “Optical detection of high-grade cervical intraepithelial neoplasia in vivo: results of a 604-patient study,” Am. J. Obstet. Gynecol. 190, 1249–1257 (2004). [CrossRef] [PubMed]
  11. U. Utzinger, R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003). [CrossRef] [PubMed]
  12. R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. MacAulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003). [CrossRef] [PubMed]
  13. D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003). [CrossRef] [PubMed]
  14. K. J. Heppner, L. M. Matrisian, R. A. Jensen, W. H. Rodgers, “Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response,” Am. J. Pathol. 149, 273–282 (1996).
  15. W. C. Parks, Matrix Metalloproteinases (Academic, 1998).
  16. I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003). [CrossRef] [PubMed]
  17. P. Ravazoula, V. Zolota, O. Hatjicondi, G. Sakellaropoulos, G. Kourounis, M. E. Maragoudakis, “Assessment of angiogenesis in human cervical lesions,” Anticancer Res. 16, 3861–3864 (1996). [PubMed]
  18. J. S. Lee, H. S. Kim, J. J. Jung, M. C. Lee, C. S. Park, “Angiogenesis, cell proliferation and apoptosis in progression of cervical neoplasia,” Anal. Quant. Cytol. Histol. 24, 103–113 (2002). [PubMed]
  19. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001). [CrossRef]
  20. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41, 4712–4721 (2002). [CrossRef] [PubMed]
  21. T. J. Pfefer, L. S. Matchette, A. M. Ross, M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt. Lett. 28, 120–122 (2003). [CrossRef] [PubMed]
  22. C. Zhu, Q. Liu, N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8, 237–247 (2003). [CrossRef] [PubMed]
  23. M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial precancers,” Lasers Surg. Med. 34, 25–38 (2004). [CrossRef]
  24. M. S. Patterson, S. Andersson-Engels, B. C. Wilson, E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995). [CrossRef] [PubMed]
  25. I. V. Meglinskii, S. D. Matcher, “Analysis of the spatial distribution of detector sensitivity in a multilayer randomly inhomogeneous medium with strong light scattering and absorption by the Monte Carlo method,” Opt. Spectrosc. 91, 654–659 (2001). [CrossRef]
  26. M. Larsson, W. Steenbergen, T. Strömberg, “Influence of optical properties and fiber separation on laser Doppler flowmetry,” J. Biomed. Opt. 7, 236–243 (2002). [CrossRef] [PubMed]
  27. M. Larsson, H. Nilsson, T. Strömberg, “In vivo determination of local skin optical properties and photon path length by use of spatially resolved diffuse reflectance with applications in laser Doppler flowmetry,” Appl. Opt. 42, 124–134 (2003). [CrossRef] [PubMed]
  28. T. Papaioannou, N. W. Preyer, Q. Fang, A. Brightwell, M. Carnohan, G. Cottone, R. Ross, L. R. Jones, L. Marcu, “Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm,” Appl. Opt. 43, 2846–2860 (2004). [CrossRef] [PubMed]
  29. T. P. Moffitt, S. A. Prahl, “Sized-fiber reflectometry for measuring local optical properties,” IEEE J. Sel. Top. Quantum Electron. 7, 952–958 (2001). [CrossRef]
  30. L. G. Koss, Diagnostic Cytology and Its Histopathologic Bases (Lippincott, 1992).
  31. L. Nieman, A. Myakov, J. Aaron, K. Sokolov, “Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms,” Appl. Opt. 43, 1308–1319 (2004). [CrossRef] [PubMed]
  32. S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, 1995). [CrossRef]
  33. L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995). [CrossRef] [PubMed]
  34. A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997). [CrossRef] [PubMed]
  35. T. A. Winning, G. C. Townsend, “Oral mucosal embryology and histology,” Clin. Dermatol. 18, 499–511 (2000). [CrossRef]
  36. D. C. Walker, B. H. Brown, A. D. Blackett, J. Tidy, R. H. Smallwood, “A study of the morphological parameters of cervical squamous epithelium,” Physiol. Meas. 24, 121–135 (2003). [CrossRef] [PubMed]
  37. S. K. Chang, D. Arifler, R. Drezek, M. Follen, R. Richards-Kortum, “An analytical model to describe fluorescence spectra of normal and pre-neoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9, 511–522 (2004). [CrossRef] [PubMed]
  38. T. Collier, D. Arifler, A. Malpica, M. Follen, R. Richards-Kortum, “Determination of epithelial tissue scattering coefficient using confocal microscopy,” IEEE J. Sel. Top. Quantum Electron. 9, 307–313 (2003). [CrossRef]
  39. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999). [CrossRef]
  40. K. Sokolov, R. A. Drezek, K. Gossage, R. R. Richards-Kortum, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology?” Opt. Express 5, 302–317 (1999). [CrossRef] [PubMed]
  41. A. Amelink, H. J. C. M. Sterenborg, “Measurement of the local optical properties of turbid media by differential path-length spectroscopy,” Appl. Opt. 43, 3048–3054 (2004). [CrossRef] [PubMed]
  42. Y. L. Kim, Y. Liu, V. M. Turzhitsky, H. K. Roy, R. K. Wali, V. Backman, “Coherent backscattering spectroscopy,” Opt. Lett. 29, 1906–1908 (2004). [CrossRef] [PubMed]
  43. R. M. Verdaasdonk, C. Borst, “Optics of fibers and fiber probes,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, 1995). [CrossRef]
  44. J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, M. S. Feld, “Optical fiber probe for biomedical Raman spectroscopy,” Appl. Opt. 43, 542–554 (2004). [CrossRef] [PubMed]
  45. R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, A. M. Gillenwater, R. Richards-Kortum, “Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,” Opt. Lett. 30, 1159–1161 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited