OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 21 — Jul. 20, 2005
  • pp: 4569–4573

Threshold effects for resistance to optical damage and nonvolatile holographic storage properties in In:Mn:Fe:LiNbO3 crystals

Xihe Zhen, Qiang Li, and Yuheng Xu  »View Author Affiliations

Applied Optics, Vol. 44, Issue 21, pp. 4569-4573 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (269 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The threshold concentration for In2O3 was found in In:Mn:Fe:LiNbO3 crystals by measurement of the infrared spectra of the crystals. The resistance of the In:Mn:Fe:LiNbO3 crystals to optical damage is characterized by changes in photoinduced birefringence as well as by distortion of the transmitted beam pattern. The resistance increases remarkably when the concentration of In2O3 exceeds its threshold. The resistance to optical damage of a In(3.0 mol. %):Mn:Fe:LiNbO3 crystal is 2 orders of magnitude higher that of a Mn:Fe:LiNbO3 crystal. The dependence of defects on the resistance to optical damage of the In:Mn:Fe:LiNbO3 crystals is discussed in detail. Nonvolatile holographic storage was achieved for all crystals, and the sensitivity of the In(3.0 mol. %):Mn:Fe:LiNbO3 crystal is much higher than that of the others.

© 2005 Optical Society of America

OCIS Codes
(160.3730) Materials : Lithium niobate
(190.5330) Nonlinear optics : Photorefractive optics
(300.1030) Spectroscopy : Absorption
(300.6540) Spectroscopy : Spectroscopy, ultraviolet
(350.1820) Other areas of optics : Damage

Original Manuscript: September 30, 2004
Revised Manuscript: February 28, 2005
Manuscript Accepted: March 4, 2005
Published: July 20, 2005

Xihe Zhen, Qiang Li, and Yuheng Xu, "Threshold effects for resistance to optical damage and nonvolatile holographic storage properties in In:Mn:Fe:LiNbO3 crystals," Appl. Opt. 44, 4569-4573 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000). [CrossRef]
  2. R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994). [CrossRef]
  3. K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998). [CrossRef]
  4. D. A. Liu, L. R. Liu, Y. W. Liu, C. H. Zhou, L. Y. Xu, “Accumulative recording of nonvolatile photorefractive holograms in LiNbO3:Fe:Mn crystals,” Opt. Commun. 197, 187–192 (2001). [CrossRef]
  5. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966). [CrossRef]
  6. L. Pálfalvi, G. Almási, J. Hebling, A. Péter, K. Polgár, “Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3,” Appl. Phys. Lett. 80, 2245–2247 (2002). [CrossRef]
  7. G. Q. Zhang, G. Y. Zhang, S. M. Liu, J. J. Xu, Q. Sun, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M = Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998). [CrossRef]
  8. N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118, 148–152 (1995). [CrossRef]
  9. T. R. Volk, V. I. Pryalkin, N. M. Rubinina, “Optical-damage-resistant LiNbO3:Zn crystal,” Opt. Lett. 15, 996–998 (1990). [CrossRef] [PubMed]
  10. T. R. Volk, N. M. Rubinina, “A new optical damage resistant impurity in lithium niobate crystals: indium,” Ferroelectr. Lett. 14, 37–43 (1992). [CrossRef]
  11. Y. Kong, J. Wen, H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction—LiNbO3:In,” Appl. Phys. Lett. 66, 280–281 (1995). [CrossRef]
  12. J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, M. Sato, “Increased optical damage resistance in Sc2O3-dopedLiNbO3,” Appl. Phys. Lett. 61, 2156–2158 (1992). [CrossRef]
  13. Y. Furukawa, M. Sato, K. Kitamura, Y. Yajima, M. Minakata, “Optical damage resistance and crystal quality of LiNbO3 single crystals with various Li/Nb ratios,” J. Appl. Phys. 72, 3250–3254 (1992). [CrossRef]
  14. T. Volk, N. Rubinina, M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994). [CrossRef]
  15. M. Fontana, K. Chah, M. Aillerie, R. Mouras, P. Bourson, “Optical damage resistance in undoped LiNbO3 crystals,” Opt. Mater. 16, 111–117 (2001). [CrossRef]
  16. X. H. Zhen, W. S. Xu, C. Z. Zhao, L. C. Zhao, Y. H. Xu, “Structure and photo-damage resistance of Li-rich LiNbO3 crystals co-doped with Zn2+/Er3,” Cryst. Res. Technol. 37, 976–982 (2002). [CrossRef]
  17. Y. F. Kong, J. C. Deng, W. L. Zhang, J. K. Wen, G. Y. Zhang, H. F. Wang, “OH− absorption spectra in doped lithium niobate crystals,” Phys. Lett. A 196, 128–132 (1994). [CrossRef]
  18. S. C. Abrahams, P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr. B 42, 61–68 (1986). [CrossRef]
  19. N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992). [CrossRef]
  20. H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, O. F. Schirmer, “Computer-simulation studies of intrinsic defects in LiNbO3 crystals,” Phys. Rev. B 40, 11,909–11,916 (1989). [CrossRef]
  21. T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995). [CrossRef]
  22. T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, M. Wöhlecke, “Relation of the photorefraction and optical-damage resistance to the intrinsic defect structure in LiNbO3 crystals,” Opt. Mater. 23, 229–233 (2003). [CrossRef]
  23. P. Günter, J.-P. Huignard, eds., Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics (Springer-Verlag, 1987).
  24. A. Adibi, K. Buse, D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000). [CrossRef]
  25. H. Kogelnik, “Coupled wave theory for thick holograms gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited