OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 22 — Aug. 1, 2005
  • pp: 4625–4630

Two-dimensional surface profile imaging technique based on a double-grating frequency shifter

Kaiwei Wang and Lijiang Zeng  »View Author Affiliations

Applied Optics, Vol. 44, Issue 22, pp. 4625-4630 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1277 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A two-dimensional surface profile imaging technique that uses a low-coherence heterodyne interferometer is proposed. A double-grating frequency shifter was used in a tandem interferometer to provide the achromatic frequency shift for low-coherence light. A chopper, together with a processing circuit, was implemented to modulate the interference fringes. The surface profile was measured from the interference fringes taken by a CCD camera using a five-step method. The uncertainty in the displacement measurement is 0.34 μm for a displacement range of 43 μm. The surface profile of a glass sample with low effective reflectivity was acquired.

© 2005 Optical Society of America

OCIS Codes
(040.2840) Detectors : Heterodyne
(050.5080) Diffraction and gratings : Phase shift
(110.4980) Imaging systems : Partial coherence in imaging
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6660) Instrumentation, measurement, and metrology : Surface measurements, roughness
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.

Original Manuscript: November 3, 2004
Revised Manuscript: February 1, 2005
Manuscript Accepted: March 9, 2005
Published: August 1, 2005

Kaiwei Wang and Lijiang Zeng, "Two-dimensional surface profile imaging technique based on a double-grating frequency shifter," Appl. Opt. 44, 4625-4630 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Z. Zhao, R. Liang, D. C. Li, M. Cao, “Practical common-path heterodyne surface profiling interferometer with automatic focusing,” Opt. Laser Technol. 33, 259–265 (2001). [CrossRef]
  2. Y. L. Lo, C. H. Chuang, “New synthetic-heterodyne demodulator for an optical fiber interferometer,” IEEE J. Quantum Electron. 37, 658–663 (2001). [CrossRef]
  3. B. Bowe, V. Toal, “White light interferometric surface profiler,” Opt. Eng. 37, 1796–1799 (1998). [CrossRef]
  4. M. Roy, C. J. R. Sheppard, P. Hariharan, “Low-coherence interference microscopy using a ferro-electric liquid crystal phase-modulator,” Opt. Express 12, 2512–2516 (2004). [CrossRef] [PubMed]
  5. L. Deck, P. Degroot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994). [CrossRef] [PubMed]
  6. A. Hirai, K. Seta, H. Matsumoto, “White-light interferometry using pseudo random-modulation for high-sensitivity and high-selectivity measurements,” Opt. Commun. 162, 11–15 (1999). [CrossRef]
  7. T. Dresel, G. Hausler, H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992). [CrossRef] [PubMed]
  8. A. Hirai, H. Matsumoto, “High-sensitivity surface profile measurements by heterodyne white-light interferometer,” Opt. Eng. 40, 387–391 (2001). [CrossRef]
  9. H. Matsumoto, A. Hirai, “A white light interferometer using a lamp source and heterodyne detection with acousto-optic modulators,” Opt. Commun. 170, 217–220 (1999). [CrossRef]
  10. A. R. D. Somervell, M. E. K. Williams, T. H. Barnes, “Direct measurement of fringe amplitude and phase using a heterodyne interferometer operating in broadband light,” Opt. Commun. 229, 59–64 (2004). [CrossRef]
  11. M. Akiba, K. P. Chan, N. Tanno, “Real-time, micrometer depth-resolved imaging by low-coherence interferometry and a two-dimensional heterodyne detection technique,” Jpn. J. Phys. 39, L1194–L1196 (2000). [CrossRef]
  12. F. Le Clerc, L. Collot, M. Gross, “Numerical heterodyne holography with two-dimensional photodetector arrays,” Opt. Lett. 25, 716–718 (2000). [CrossRef]
  13. K. P. Chan, M. Sato, M. Akiba, N. Tanno, “Detection schemes for optical-coherence-domain imaging of biological tissues,” Opt. Rev. 7, 389–395 (2000). [CrossRef]
  14. K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, A. Dienes, “400-Hz mechanical scanning optical delay line,” Opt. Lett. 18, 558–560 (1993). [CrossRef] [PubMed]
  15. L. J. Zeng, I. Fujima, A. Hirai, H. Matsumoto, S. Iwasaki, “A two-color heterodyne interferometer for measuring the refractive index of air using an optical diffraction grating,” Opt. Commun. 203, 243–247 (2002). [CrossRef]
  16. F. Rickermann, S. Riehemann, G. von Bally, S. Breer, K. Buse, “A high resolution real-time temporal heterodyne interferometer for refractive index topography,” Opt. Commun. 144, 173–179 (1997). [CrossRef]
  17. A. Hirai, L. J. Zeng, H. Matsumoto, “Heterodyne Fourier transform spectroscopy using moving diffraction grating,” Jpn. J. Phys. 40, 6138–6142 (2001). [CrossRef]
  18. Y. L. Lo, C. H. Chuang, “Fluid velocity measurements in a microchannel performed with two new optical heterodyne microscopes,” Appl. Opt. 41, 6666–6675 (2002). [CrossRef] [PubMed]
  19. R. S. Sirohi, M. P. Kothiyal, Optical Components, Systems, and Measurement Techniques (Marcel Dekker, 1990), pp. 236–237.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited