OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 22 — Aug. 1, 2005
  • pp: 4684–4692

Dynamic time-resolved diffuse spectroscopy based on supercontinuum light pulses

Johannes Swartling, Andrea Bassi, Cosimo D’Andrea, Antonio Pifferi, Alessandro Torricelli, and Rinaldo Cubeddu  »View Author Affiliations

Applied Optics, Vol. 44, Issue 22, pp. 4684-4692 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (702 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a detailed characterization of a system for fast time-resolved spectroscopy of turbid media based on supercontinuum generation in a photonic crystal fiber. The light source provides subpicosecond pulses in the 550–1000-nm spectral range, at 85 MHz, at an average power of up to 50 mW. Wavelength-resolved detection is accomplished by means of a spectrometer coupled to a 16-channel, multianode photomultiplier tube, giving a resolution of 4.5–35 nm/channel, depending on the grating. Time-dispersion curves are acquired with time-correlated single-photon counting, and absorption and reduced scattering coefficients are determined by fitting the data to the diffusion equation. We characterized the system by measuring the time-resolved diffuse reflectance of epoxy phantoms and by assessing the performance in terms of accuracy, linearity, noise sensitivity, stability, and reproducibility. The results were similar to those from previous systems, whereas the full-spectrum (6103810 nm) acquisition time was as short as 1 s owing to the parallel acquisition. We also present the first in vivo real-time dynamic spectral measurements showing tissue oxygenation changes in the arm of a human subject.

© 2005 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.7050) Medical optics and biotechnology : Turbid media
(300.6500) Spectroscopy : Spectroscopy, time-resolved

Original Manuscript: October 20, 2004
Revised Manuscript: January 13, 2005
Manuscript Accepted: January 13, 2005
Published: August 1, 2005

Johannes Swartling, Andrea Bassi, Cosimo D’Andrea, Antonio Pifferi, Alessandro Torricelli, and Rinaldo Cubeddu, "Dynamic time-resolved diffuse spectroscopy based on supercontinuum light pulses," Appl. Opt. 44, 4684-4692 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2, 124–129 (2003). [CrossRef] [PubMed]
  2. R. Doornbos, R. Lang, M. Aalders, F. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999). [CrossRef] [PubMed]
  3. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498–6507 (2000). [CrossRef]
  4. S. Andersson-Engels, R. Berg, A. Persson, S. Svanberg, “Multispectral tissue characterization with time-resolved detection of diffusely scattered white light,” Opt. Lett. 18, 1697–1699 (1993). [CrossRef] [PubMed]
  5. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999). [CrossRef]
  6. J. Johansson, S. Folestad, M. Josefson, A. Sparen, C. Abrahamsson, S. Andersson-Engels, S. Svanberg, “Time-resolved NIR/Vis spectroscopy for analysis of solids: pharmaceutical tablets,” Appl. Spectrosc. 56, 725–731 (2002). [CrossRef]
  7. S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989). [CrossRef] [PubMed]
  8. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996). [CrossRef] [PubMed]
  9. A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9, 1143–1151 (2004). [CrossRef] [PubMed]
  10. V. Ntziachristos, X. H. Ma, A. G. Yodh, B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70, 193–201 (1999). [CrossRef]
  11. F. E. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000). [CrossRef]
  12. E. M. C. Hillman, “Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications,” Ph.D. dissertation (University College London, London, UK, 2002).
  13. A. Bassi, J. Swartling, C. D’Andrea, A. Pifferi, A. Torricelli, R. Cubeddu, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,” Opt. Lett. 29, 2405–2407 (2004). [CrossRef] [PubMed]
  14. C. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, S. Folestad, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber,” Opt. Express 12, 4103–4112 (2004). [CrossRef] [PubMed]
  15. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44, 2104–2114 (2005). [CrossRef] [PubMed]
  16. J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]
  17. S. Coen, A. Hing, Lun Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, P. St, J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002). [CrossRef]
  18. J. Swartling, J. S. Dam, S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42, 4612–4620 (2003). [CrossRef] [PubMed]
  19. E. Antonini, M. Brunori, Hemoglobin and Moglobin in Their Reactions with Ligands (North-Holland, Amsterdam, 1971).
  20. J. Swartling, “Biomedical and atmospheric applications of optical spectroscopy in scattering media,” Ph.D. dissertation (Lund Institute of Technology, Lund, Sweden, 2002).
  21. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170–3186 (2003). [CrossRef] [PubMed]
  22. A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, G. Danesini, “Four-wavelength time-resolved optical mammography in the 680–980-nm range,” Opt. Lett. 28, 1138–1140 (2003). [CrossRef] [PubMed]
  23. J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997). [CrossRef] [PubMed]
  24. C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D 36, 1675–1681 (2003). [CrossRef]
  25. W. Becker, A. Bergmann, G. Biscotti, C. Biskup, “Fluorescence lifetime imaging by multi-detector TCSPC,” in OSA Biomedical Topical Meetings on CD-ROM, OSA Technical Digest, WD1 (2004).
  26. Y. Nomura, O. Hazeki, M. Tamura, “Relationship between time-resolved and non-time-resolved Beer–Lambert law in turbid media,” Phys. Med. Biol. 42, 1009–1022 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited