OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 22 — Aug. 1, 2005
  • pp: 4712–4721

Development of high-resolution real-time sub-ppb ethane spectroscopy and some pilot studies in life science

Kenneth D. Skeldon, Graham M. Gibson, Cathy A. Wyse, Lesley C. McMillan, Steve D. Monk, Chris Longbottom, and Miles J. Padgett  »View Author Affiliations


Applied Optics, Vol. 44, Issue 22, pp. 4712-4721 (2005)
http://dx.doi.org/10.1364/AO.44.004712


View Full Text Article

Enhanced HTML    Acrobat PDF (1182 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a high-resolution real-time spectroscopy system targeted to ethane gas with sensitivity ≥70 ppt and response time from ≥0.7 s. The measurement technique is based on a mid-IR lead-salt laser passing through a Herriott cell through which a gas sample flows. We compare wavelength scanning and locked configurations and discuss their relative merits. The technology has been motivated by clinical breath testing applications, ethane being widely regarded as the most important breath biomarker for cell damage via free-radical-mediated oxidative attack. We discuss preliminary human and animal studies in which ultrasensitive real-time ethane detection offers new diagnostic and monitoring potential.

© 2005 Optical Society of America

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6380) Spectroscopy : Spectroscopy, modulation

History
Original Manuscript: July 20, 2004
Revised Manuscript: October 20, 2004
Manuscript Accepted: December 15, 2004
Published: August 1, 2005

Citation
Kenneth D. Skeldon, Graham M. Gibson, Cathy A. Wyse, Lesley C. McMillan, Steve D. Monk, Chris Longbottom, and Miles J. Padgett, "Development of high-resolution real-time sub-ppb ethane spectroscopy and some pilot studies in life science," Appl. Opt. 44, 4712-4721 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-22-4712


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Španěl, D. Smith, “Selected ion flow tube: a technique for quantitative trace gas analysis of air and breath,” Med. Biol. Eng. Comput. 34, 409–419 (1996). [CrossRef] [PubMed]
  2. K. L. Moskalenko, A. I. Nadezhdinskii, I. A. Adamovskaya, “Human breath trace gas content study by tunable diode laser spectroscopy technique,” Infrared Phys. Technol. 37, 181–192 (1996). [CrossRef]
  3. G. von Basum, H. Dahnke, D. Halmer, P. Hering, M. Mürtz, “Online recording of ethane traces in human breath via infrared laser spectroscopy,” J. Appl. Physiol. 95, 2583–2590 (2003). [PubMed]
  4. R. Teranishi, T. R. Mon, A. B. Robinson, P. Cary, L. Pauling, “Gas chromatography of volatiles from breath and urine,” Anal. Chem. 44, 18–20 (1972). [CrossRef] [PubMed]
  5. C. A. Riely, G. Cohen, M. Lieberman, “Ethane evolution: a new index of lipid peroxidation,” Science, 183, 208–210 (1974). [CrossRef] [PubMed]
  6. C. R. Wade, A. M. van Rij, “In-vivo lipid peroxidation in man as measured by the respiratory excretion of ethane, pentane and other low-molecular-weight hydrocarbons,” Anal. Biochem. 150, 1–7 (1985). [CrossRef] [PubMed]
  7. C. M. F. Kneepkens, G. Lepage, C. C. Roy, “The potential of the hydrocarbon breath test as a measure of lipid peroxidation,” Free Radic. Biol. Med. 17, 127–160 (1994). [CrossRef] [PubMed]
  8. M. D. Knutson, A. K. Lim, F. E. Viteri, “A practical and reliable method for measuring ethane and pentane in expired air from humans,” Free Radic. Biol. Med. 27, 560–571 (1999). [CrossRef] [PubMed]
  9. A. Manolis, “The diagnostic potential of breath analysis,” Clin. Chem. 29, 5–15 (1983). [PubMed]
  10. P. Paredi, S. A. Kharitonov, P. J. Barnes, “Analysis of expired air for oxidation products,” Am. J. Respir. Crit. Care Med. 166, S31–S37 (2002). [CrossRef] [PubMed]
  11. M. Phillips, J. Greenberg, J. Awad, “Metabolic and environmental origins of volatile organic compounds in breath,” J. Clin. Pathol. 47, 1052–1053 (1994). [CrossRef] [PubMed]
  12. M. S. Daugherty, T. M. Ludden, R. F. Burk, “Metabolism of ethane and pentane to carbon dioxide by the rat,” Drug Metab. Dispos. 16, 666–671 (1988). [PubMed]
  13. B. Hirst, G. Gibson, S. Gillespie, I. Archibald, O. Podlaha, K. Skeldon, J. Courtial, S. Monk, M. Padgett, “Oil and gas prospecting by ultra-sensitive optical gas detection with inverse gas dispersion modelling,” Geophys. Res. Lett. 31, L12115 (2004). [CrossRef]
  14. F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parameteric oscillator,” Appl. Phys. B. 66, 741–745 (1998). [CrossRef]
  15. M. M. J. W. van Herpen, S. Li, S. E. Bisson, F. J. M. Harren, “Photoacoustic trace gas detection of ethane using a continuously tunable continuous-wave optical parameteric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 81, 1157–1159 (2002). [CrossRef]
  16. H. Dahnke, D. Kleine, P. Hering, M. Mürtz, “Real-time monitoring of ethane in human breath using mid-infrared cavity leak out spectroscopy,” Appl. Phys. B. 72, 971–975, (2001). [CrossRef]
  17. G. von Basum, D. Halmer, P. Hering, M. Mürtz, “Parts per trillion sensitivity for ethane in air with an optical parametric oscillator cavity leak-out spectrometer,” Opt. Lett. 29, 797–799 (2004). [CrossRef] [PubMed]
  18. D. R. Herriott, H. Kogelnik, R. Kompfner, “Off-axis paths in spherical mirror resonators,” Appl. Opt. 3, 523–526 (1964). [CrossRef]
  19. J. M. Supplee, E. A. Whittaker, W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994). [CrossRef] [PubMed]
  20. G. Gibson, S. D. Monk, M. Padgett, “A field-portable, laser-diode spectrometer for the ultra-sensitive detection of hydrocarbon gases,” J. Mod. Opt. 49, 769–776 (2002). [CrossRef]
  21. M. D. Knutson, A. K. Lim, F. E. Viteri, “A practical and reliable method for measuring ethane and pentane in expired air from humans,” Free Radic. Biol. Med. 27, 560–571 (1999). [CrossRef] [PubMed]
  22. E. Aghdassi, J. P. Allard, “Breath alkanes as a marker of oxidative stress in different clinical conditions,” Free Radic. Biol. Med. 28, 880–886 (2000). [CrossRef] [PubMed]
  23. S. Petruzzelli, E. Hietanen, H. Bartsch, B. S. Camus, A. Mussi, C. A. Angeletti, R. Saracci, C. Giuntini, “Pulmonary lipid peroxidation in cigarette smokers and lung cancer patients,” Chest 98, 930–935 (1990). [CrossRef] [PubMed]
  24. V. Bracher, V. R. von Fellenberg, R. C. N. Winder, G. Gruenig, M. Hermann, A. Kraehenmann, “An investigation of the incidence of chronic obstructive pulmonary disease (COPD) in random populations of Swiss horses,” Equine Vet. J. 23, 136–141 (1991). [CrossRef] [PubMed]
  25. N. E. Robinson, “International workshop on equine chronic airway disease,” Equine Vet. J. 33, 5–19 (2001). [CrossRef] [PubMed]
  26. S. A. Kharitonov, P. J. Barnes, “Exhaled nitric oxide, carbon monoxide and breath condensate in inflammatory lung disease and response to medical treatment,” in Disease Markers in Exhaled Breath, C. Lenfant, ed. (Marcel Dekker, New York, 2003), Chap. 14.
  27. N. Kirschvink, T. Art, N. Smith, P. Lekeux, “Effect of exercise and COPD crisis on isoprostane concentration in plasma and bronchoalveolar lavage fluid in horses,” Equine Vet. J. Suppl. 30, 88–91 (1999).
  28. C. A. Wyse, K. Skeldon, J. W. Hotchkiss, G. Gibson, P. S. Yam, R. M. Christley, T. Preston, D. R. S. Cummin, M. Padgett, J. C. Cooper, S. Love, “The effect of environmental modification on exhaled ethane, carbon monoxide and hydrogen peroxide in horses with respiratory inflammation,” Vet. Rec. (in press).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited