OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 22 — Aug. 1, 2005
  • pp: 4753–4760

Development of a multitechnology field-programmable gate array suitable for photonic information processing

Prosenjit Mal, Jason F. Cantin, and Fred R. Beyette, Jr.  »View Author Affiliations

Applied Optics, Vol. 44, Issue 22, pp. 4753-4760 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (168 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The architecture of a novel, multitechnology field-programmable gate array (FPGA) is introduced. Based on conventional complementary metal-oxide semiconductor VLSI technology this architecture has demonstrated the feasibility of reconfigurable and programmable hardware for prototyping photonic information processing systems. We report that this new FPGA architecture will enable the design of reconfigurable systems that incorporated technologies outside the traditional electronic domain. The smart photoreceivers monolithically integrated in the new FPGA architecture can receive optically encoded signals in parallel and process them with user programmable logic hardware.

© 2005 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(130.3120) Integrated optics : Integrated optics devices
(200.3050) Optics in computing : Information processing

Original Manuscript: May 6, 2004
Revised Manuscript: January 25, 2005
Manuscript Accepted: March 11, 2005
Published: August 1, 2005

Prosenjit Mal, Jason F. Cantin, and Fred R. Beyette, "Development of a multitechnology field-programmable gate array suitable for photonic information processing," Appl. Opt. 44, 4753-4760 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. S. Carter, K. Duong, R. H. Freeman, H.-C. Hsieh, J. Y. Ja, J. E. Mahoney, L. T. Ngo, S. L. Sze, “A user programmable reconfigurable gate array,” in IEEE Custom Integrated Circuits Conference (IEEE, 1986), pp. 233–235.
  2. P. Marchal, “Field-programmable gate arrays,” Commun. ACM 42, 57–59 (1999). [CrossRef]
  3. J. Rose, D. Hill, “Architectural and physical design challenges for one-million gate FPGAs and beyond,” in Proceedings of the 1997 ACM Fifth International Symposium on Field-Programmable Gate Arrays (Association for Computing Machinery, 1997), pp. 129–132. [CrossRef]
  4. F. R. Beyette, P. J. Stanko, S. A. Feld, P. A. Mitkas, C. W. Wilmsen, K. M. Geib, K. D. Choquette, “Demonstration and performance of a recirculating sorter based on complementary metal oxide semiconductor logic and vertical cavity surface emitting lasers,” Opt. Eng. 37, 312–319 (1998). [CrossRef]
  5. P. Mal, A. Chokhani, V. S. Vagheeswar, S. K. Kumar, J. F. Cantin, F. R. Beyette, “Development of a general purpose configurable architecture for smart-pixel research,” Opt. Eng. 43, 1121–1127 (2004). [CrossRef]
  6. S. S. Sherif, S. K. Griebel, A. Au, D. Hui, T. H. Szymanski, H. S. Hinton, “Field-programmable smart-pixel arrays: design, VLSI implementation, and applications,” Appl. Opt. 38, 838–846 (1999). [CrossRef]
  7. P. Mal, J. F. Cantin, F. R. Beyette, “Design and demonstration of an optical field programmable gate array,” in Wave Optics and VLSI Photonic Devices for Information Processing, P. Ambs, F. R. Beyette, eds., Proc. SPIE4435, 238–246 (2001). [CrossRef]
  8. J. Van Campenhout, H. Van Marck, J. Depreitere, J. Dambre, “Optoelectronic FPGAs,” IEEE J. Sel. Top. Quantum Electron. 5, 306–315 (1999). [CrossRef]
  9. P. Mal, J. F. Cantin, F. R. Beyette, “Programmable photoreceiver module for incorporation in an optical field-programmable gate array,” in Optoelectronic and Wireless Data Management, Processing, Storage, and Retrieval, R. Raymond, P. K. Srimani, R. Su, C. W. Wilmsen, eds., Proc. SPIE4534, 138–147 (2001). [CrossRef]
  10. G. Jing, D. B. Oerther, I. Papautsky, “Culture-based biochip for environmental monitoring,” in Microfluidics, Bio-MEMS, and Medical Microsystems II, P. Woias, I. Papautsky, eds., Proc. SPIE5345, 68–77 (2004). [CrossRef]
  11. O. Leistiko, P. F. Jensen, “Integrated bio/chemical microsystems employing optical detection: the clip-on,” J. Micromech. Microeng. 8, 148–150 (1998). [CrossRef]
  12. H. Qiao, S. Goel, A. Grundmann, J. N. McMullin, “Biochips with integrated optics and fluidics,” in Smart Materials, Structures, and Systems, S. Mohan, B. Dattaguru, S. Gopalakrishnan, eds., Proc. SPIE5062, 873–878 (2003). [CrossRef]
  13. Z. Zhao, D. Cui, S. Xia, Z. Cui, “An integrated biochip design and fabrication,” in Nano- and Microtechnology: Materials, Processes, Packaging, and Systems, D. K. Sood, A. P. Malshe, R. Maeda, eds., Proc. SPIE4936, 321–326 (2002).
  14. H. Eluru, A. Polaczyk, R. Chhabra, B. Kinkle, D. Oerther, I. Papautsky, “Culture-based biochips for measuring microorganisms in waster water treatment,” in Proceedings of IEEE Conference on Microtechnologies in Medicine and Biology (IEEE, 2002).
  15. P. Mal, J. F. Cantin, F. R. Beyette, “The circuit designs of an SRAM based look-up table for high performance FPGA architecture,” in Midwest Symposium on Circuits and Systems (Institute of Electrical and Electronics Engineers, 2002), Vol. 3, pp. III227–III230.
  16. P. Chow, S. O. Seo, J. Rose, K. Chung, G. Paez-Monzon, I. Rahardja, “The design of a SRAM-based field-programmable gate array. I. Architecture,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 7, 191–197 (1999). [CrossRef]
  17. P. Chow, S. O. Seo, J. Rose, K. Chung, G. Paez-Monzon, I. Rahardja, “The design of a SRAM-based field-programmable gate array. Part II. Circuit design and layout,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 7, 321–330 (1999). [CrossRef]
  18. For more information on the MOSIS Foundry Service go to the MOSIS Web site at http://www.mosis.org .
  19. J. M. Rabaey, Digital Integrated Circuits: a Designer Perspective (Prentice-Hall, 1996), pp. 116–119.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited