OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 22 — Aug. 1, 2005
  • pp: 4775–4784

Simultaneous stratospheric gas and aerosol retrievals from broadband infrared occultation measurements

Sergey Oshchepkov, Yasuhiro Sasano, Tatsuya Yokota, Nobuyuki Uemura, Hisashi Matsuda, Yasuhiro Itou, and Hideaki Nakajima  »View Author Affiliations

Applied Optics, Vol. 44, Issue 22, pp. 4775-4784 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (725 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The inversion method for simultaneous gas (O3, NO2, HNO3, N2O, CH4, H2O, CFC-11, CFC-12, N2O5, and ClONO2) and aerosol retrievals from broadband continuous IR spectra of occultation measurements is described. Both gas and aerosol physical modeling with consideration of the multicomponent character of aerosol and polar stratospheric clouds (PSCs) are used to minimize the difference between measured and modeled transmittance spectra under smoothness constraints imposed on particle-size distributions for each PSC component and positive constraints on all gas and aerosol parameters. The method is tested by numerical simulations in which synthetic occultation measurements inherent to the improved limb atmospheric spectrometer are used. The study reveals that the method has significant advantages over other approaches based on offset or gas–window–channel aerosol correction for accurate gas retrievals and provides additional information on the particle-size composition, volume density, and chemical component character of PSCs.

© 2005 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1100) Remote sensing and sensors : Aerosol detection

Original Manuscript: June 23, 2004
Revised Manuscript: April 15, 2005
Manuscript Accepted: April 15, 2005
Published: August 1, 2005

Sergey Oshchepkov, Yasuhiro Sasano, Tatsuya Yokota, Nobuyuki Uemura, Hisashi Matsuda, Yasuhiro Itou, and Hideaki Nakajima, "Simultaneous stratospheric gas and aerosol retrievals from broadband infrared occultation measurements," Appl. Opt. 44, 4775-4784 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Solomon, “Stratospheric ozone depletion: a review of concepts and history,” Rev. Geophys. 37, 275–316 (1999). [CrossRef]
  2. M. R. Gunson, M. M. Abbas, M. C. Abrams, M. Allen, L. R. Brown, T. L. Brown, A. Y. Chang, A. Goldman, F. W. Irion, L. L. Lowes, E. Mahieu, G. L. Manney, H. A. Michelsen, M. J. Newchurch, C. P. Rinsland, R. J. Salawitch, G. P. Stiller, G. C. Toon, Y. L. Yung, R. Zander, “The atmospheric trace molecule spectroscopy (ATMOS) experiment: deployment on the ATLAS Space Shuttle missions,” Geophys. Res. Lett. 23, 2333–2336 (1996). [CrossRef]
  3. C. P. Rinsland, G. K. Yue, M. R. Gunson, R. Zander, M. C. Abrams, “Mid-infrared extinction by sulfate aerosols from the Mt. Pinatubo eruption,” J. Quant. Spectrosc. Radiat. Transfer 52, 241–252 (1994). [CrossRef]
  4. A. Eldering, F. W. Irion, A. Y. Chang, M. R. Gunson, F. P. Mills, H. M. Steele, “Vertical profiles of aerosol volume from high-spectral-resolution infrared transmission measurements. I. Methodology,” Appl. Opt. 40, 3082–3091 (2001). [CrossRef]
  5. A. Yu. Zasetsky, J. J. Sloan, R. Escribano, D. Fernandez, “A new method for the quantitative identification of the composition, size, and density of stratospheric aerosols from high-resolution IR satellite measurements,” Geophys. Res. Lett.29, doi: (2003). [CrossRef]
  6. J. M. Russell, L. L. Gordley, J. H. Park, S. R. Drayson, W. D. Hesketh, R. J. Cicerone, A. F. Tuck, J. E. Frederick, J. E. Harries, P. J. Crutzen, “The halogen occultation experiment,” J. Geophys. Res. 98, 10,777–10,797 (1993). [CrossRef]
  7. M. E. Hervig, T. Deshler, J. M. Russell, “Aerosol size distributions obtained from HALOE spectral extinction measurements,” J. Geophys. Res. 103, 1573–1583 (1998). [CrossRef]
  8. Y. Sasano, M. Suzuki, T. Yokota, H. Kanzawa, “Improved limb atmospheric spectrometer (ILAS) for stratospheric ozone layer measurements by solar occultation technique,” Geophys. Res. Lett. 26, 197–200 (1999). [CrossRef]
  9. T. Yokota, H. Nakajima, T. Sugita, H. Tsubaki, Y. Itou, M. Kaji, M. Suzuki, H. Kanzawa, J. H. Park, Y. Sasano, “Improved limb atmospheric spectrometer (ILAS) data retrieval algorithm for Version 5.20 gas profile products,” J. Geophys. Res.107(D24), 8216, doi: (2002). [CrossRef]
  10. Y. Sasano, T. Yokota, H. Nakajima, T. Sugita, H. Kanzawa, “ILAS-II instrument and data processing system for stratospheric ozone layer monitoring,” in Optical Remote Sensing of the Atmosphere and Clouds II, Y. Sasano, J. Wang, T. Hayasaka, eds., Proc. SPIE4150, 106–114 (2001). [CrossRef]
  11. S. Oshchepkov, Y. Sasano, T. Yokota, “New method for simultaneous gas and aerosol retrievals from space limb-scanning spectral observation of the atmosphere,” Appl. Opt. 41, 4234–4244 (2002). [CrossRef] [PubMed]
  12. L. S. Rothman, C. P. Pinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database an HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–670 (1998). [CrossRef]
  13. U. M. Biermann, B. P. Luo, T. Peter, “Absorption spectra and optical constants of binary and ternary solutions of H2SO4, HNO3, and H2O in the mid-infrared at atmospheric temperatures,” J. Phys. Chem. A 104, 783–793 (2000). [CrossRef]
  14. R. F. Niedziela, M. L. Norman, C. L. DeForest, R. E. Miller, D. R. Worsnop, “A temperature- and composition-dependent study of H2SO4 aerosol optical constants using Fourier transform and tunable diode laser infrared spectroscopy,” J. Phys. Chem. 103, 8030–8040 (1999). [CrossRef]
  15. M. L. Norman, J. Qian, R. E. Miller, D. R. Worsnop, “Infrared complex refractive indices of supercooled liquid HNO3/H2O aerosols,” J. Geophys. Res. 104, 30,571–30,584 (1999). [CrossRef]
  16. L. J. Richwine, M. L. Clapp, R. E. Miller, D. R. Worsnop, “Complex refractive indices in the infrared of nitric acid trihydrate aerosols,” Geophys. Res. Lett. 22, 2625–2628 (1995). [CrossRef]
  17. R. F. Niedziela, R. E. Miller, D. R. Worsnop, “Temperature- and frequency-dependent optical constants for nitric acid dihydrate from aerosol spectroscopy,” J. Phys. Chem. 102, 6477–6484 (1998). [CrossRef]
  18. M. L. Clapp, R. E. Miller, D. R. Worsnop, “Frequency-dependent optical constants of water ice obtained directly from aerosol extinction spectra,” J. Phys. Chem. 99, 6317–6326 (1995). [CrossRef]
  19. O. B. Toon, M. A. Tolbert, B. J. Koehler, A. M. Middlebrook, J. Jordan, “Infrared optical constants of H2O ice, amorphous nitric acid solution, and nitric acid hydrates,” J. Geophys. Res. 99(D12), 25631–25654 (1994). [CrossRef]
  20. K. S. Carslaw, B. Luo, T. Peter, “An analytic expression for the composition of aqueous HNO3-H2SO4 stratospheric aerosols including gas phase removal of HNO3,” Geophys. Res. Lett. 22, 1877–1880 (1995). [CrossRef]
  21. S. Kinne, O. B. Toon, G. C. Toon, C. B. Farmer, E. V. Browell, M. P. McCormick, “Measurements of size and composition of particles in polar stratospheric clouds from infrared solar absorption spectra,” J. Geophys. Res. 94, 16,481–16,491 (1989). [CrossRef]
  22. R. T. Tisdale, A. J. Prenni, L. T. Iraci, M. A. Tolbert, “Variation of the infrared spectra of nitric acid hydrates with formation conditions: impact on PSC identification,” Geophys. Res. Lett. 6, 707–710 (1999). [CrossRef]
  23. R. Spang, J. J. Remedios, “Observations of a distinctive infrared spectral feature in the atmospheric spectra of polar stratospheric clouds measured by the CRISTA instrument,” Geophys. Res. Lett.22, doi: (2003). [CrossRef]
  24. K.-M. Lee, J. H. Park, Y. Kim, W. Choi, H.-K. Cho, S. T. Massie, Y. Sasano, T. Yokota, “Properties of polar stratospheric clouds observed by ILAS in early 1997,” J. Geophys. Res.108(D7), doi: (2003). [CrossRef]
  25. D. J. Hofmann, T. Deshler, “Stratospheric cloud observations during formation of the Antarctic ozone hole in 1989,” J. Geophys. Res. 96, 2897–2912 (1991). [CrossRef]
  26. A. Adriani, T. Deshler, G. P. Gobbi, B. J. Johnson, G. Di Donfrancesco, “Polar stratospheric clouds over McMurdo, Antarctica, during the 1991 spring: lidar and particle counter measurements,” Geophys. Res. Lett. 19, 1755–1758 (1992). [CrossRef]
  27. T. Deshler, B. J. Johnson, W. R. Rozier, “Changes in the character of polar stratospheric clouds over Antarctica in 1992 due to Pinatubo volcanic aerosol,” Geophys. Res. Lett. 21, 273–276 (1994). [CrossRef]
  28. T. Deshler, “In situ measurements of Pinatubo aerosol over Kiruna on four days between 18 January and 13 February 1992,” Geophys. Res. Lett. 21, 1323–1326 (1994). [CrossRef]
  29. T. Deshler, T. Peter, R. Müller, P. Crutzen, “The lifetime of leewave-induced ice particles in the Arctic stratosphere: 1. Balloonborne observations,” Geophys. Res. Lett. 21, 1327–1330 (1994). [CrossRef]
  30. T. Deshler, B. Nardi, A. Adriani, F. Cairo, G. Hansen, F. Fierli, A. Hauchecorne, L. Pulvirenti, “Determining the index of refraction of polar stratospheric clouds above Andoya (69 °N) by combining size-resolved concentration and optical scattering measurements,” J. Geophys. Res. 105, 3943–3953 (2000). [CrossRef]
  31. C. Voigt, N. Larsen, T. Deshler, C. Kröger, J. Schreiner, K. Mauersberger, B. Luo, A. Adriani, F. Cairo, G. Di Donfrancesco, J. Ovarlez, H. Ovarlez, A. Dörnbrack, B. Knudsen, J. Rosen, “In situ mountain-wave polar stratospheric cloud measurements: implications for nitric acid trihydrate formation,” J. Geophys. Res.108(D5), doi: (2003). [CrossRef]
  32. R. Penndorf, “Scattering coefficients for absorbing and nonabsorbing aerosols,” (Air Force Cambridge Research Laboratory, 1960).
  33. S. Oshchepkov, H. Isaka, “Inverse scattering problem for mixed-phase and ice clouds. 1. Numerical simulation of particle sizing from phase-function measurements,” Appl. Opt. 36, 8765–8774 (1997). [CrossRef]
  34. S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier, 1977).
  35. D. L. Phillips, “A technique for the numerical solution of certain integral equations of first kind,” J. Assoc. Comput. Math. 9, 84–97 (1962). [CrossRef]
  36. J. J. Moré, “The Levenberg–Marquardt algorithm, implementation, and theory,” in Numerical Analysis, G. A. Watson, ed., Vol. 630 of Lecture Notes in Mathematics (Springer-Verlag, 1977).
  37. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran (Cambridge University, 1992).
  38. C. R. Rao, Linear Statistical Inference and its Applications, 2nd ed. (Wiley, 1973). [CrossRef]
  39. Y. Bard, Nonlinear Parameter Estimation (Academic, 1974).
  40. S. Oshchepkov, O. V. Dubovik, “Optimized iterative method for numerical solution of Fredholm integral equation of the first kind for positive definite values,” Atmos. Ocean Phys. 30, 153–160 (1994).
  41. S. Oshchepkov, Y. Sasano, T. Yokota, H. Nakajima, “A novel approach for stratospheric aerosol and cloud characterization using visible and infrared gas window channels: first application to ILAS satellite observations,” submitted to Geophys. Res. Lett.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited