OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 22 — Aug. 1, 2005
  • pp: 4785–4790

Monte Carlo approach to identification of the composition of stratospheric aerosols from infrared solar occultation measurements

Alexander Y. Zasetsky and James J. Sloan  »View Author Affiliations


Applied Optics, Vol. 44, Issue 22, pp. 4785-4790 (2005)
http://dx.doi.org/10.1364/AO.44.004785


View Full Text Article

Enhanced HTML    Acrobat PDF (391 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe an inversion method for determining the composition, density, and size of stratospheric clouds and aerosols by satellite remote sensing. The method, which combines linear least-squares minimization and Monte Carlo techniques, is tested with pure synthetic IR spectra. The synthetic spectral data are constructed to mimic mid-IR spectra recorded by the Improved Limb Atmospheric Spectrometer (ILAS-I and ILAS-II) instruments, which operate in the solar occultation mode and record numerous polar stratospheric cloud events. The advantages and limitations of the proposed technique are discussed. In brief we find that stratospheric aerosol in the size range from 0.5 to 4.0 μm can be retrieved to an accuracy of 30%. We also show that the chemical composition of common stratospheric aerosols can be determined, whereas identification of their phases from mid-IR satellite remote-sensing data alone appears to be questionable.

© 2005 Optical Society of America

OCIS Codes
(280.1100) Remote sensing and sensors : Aerosol detection
(290.1090) Scattering : Aerosol and cloud effects

History
Original Manuscript: September 20, 2004
Revised Manuscript: February 15, 2005
Manuscript Accepted: February 15, 2005
Published: August 1, 2005

Citation
Alexander Y. Zasetsky and James J. Sloan, "Monte Carlo approach to identification of the composition of stratospheric aerosols from infrared solar occultation measurements," Appl. Opt. 44, 4785-4790 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-22-4785


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S. Carslaw, T. Peter, S. L. Clegg, “Modeling the composition of liquid stratospheric aerosols,” Rev. Geophys. 35, 125–154 (1997). [CrossRef]
  2. T. Peter, “Microphysics and heterogeneous chemistry of polar stratospheric clouds,” Ann. Rev. Phys. Chem. 48, 785–822 (1997). [CrossRef]
  3. L. L. Pan, W. J. Randel, H. Nakajima, S. T. Massie, H. Kanzawa, Y. Sasano, T. Yokota, T. Sugita, S. Hayashida, S. Oshchepkov, “Satellite observation of dehydration in the Arctic Polar stratosphere,” Geophys. Res. Lett.29, doi: (2002). [CrossRef]
  4. M. L. Santee, W. G. Read, J. W. Waters, L. Froidevaux, G. L. Manney, D. A. Flower, R. F. Jarnot, R. S. Harwood, G. E. Peckham, “Interhemispheric differences in polar stratospheric HNO3, H2O, CIO, and O3,” Science 267, 849–852 (1995). [CrossRef] [PubMed]
  5. A. Tabazadeh, E. J. Jensen, O. B. Toon, K. Drdla, M. R. Schoeberl, “Role of the stratospheric polar freezing belt in dentrification,” Science 291, 2591–2594 (2001). [CrossRef] [PubMed]
  6. S. Solomon, “The mystery of the Antarctic ozone ”hole’,” Rev. Geophys. 26, 131–148 (1988). [CrossRef]
  7. Y. Sasano, M. Suzuki, T. Yokota, H. Kanzawa, “Improved Limb Atmospheric Spectrometer (ILAS) for stratospheric ozone layer measurements by solar occultation technique,” Geophys. Res. Lett. 26, 197–200 (1999). [CrossRef]
  8. S. Hayashida, N. Saitoh, A. Kagawa, T. Yokota, M. Suzuki, H. Nakajima, Y. Sasano, “Arctic polar stratospheric clouds observed with the Improved Limb Atmospheric Spectrometer during winter 1996/1997,” J. Geophys. Res. Atmos. 105, 24715–24730 (2000). [CrossRef]
  9. S. L. Oshchepkov, Y. Sasano, T. Yokota, “New method for simultaneous gas and aerosol retrievals from space limb-scanning spectral observation of the atmosphere,” Appl. Opt. 41, 4234–4244 (2002). [CrossRef] [PubMed]
  10. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge University, 1989).
  11. S. L. Oshchepkov, “Optimum wavelength selections for atmospheric remote sensing. 1999,” Eco-Frontier Fellowship (EFF) in 1998 (Research & Information Office, Global Environmental Department, Environment Agency of Japan, Tokyo, 1999).
  12. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  13. U. M. Biermann, B. P. Luo, T. Peter, “Absorption spectra and optical constants of binary and ternary solutions of H2SO4, HNO3, and H2O in the mid-infrared at atmospheric temperatures,” J. Phys. Chem. A 104, 783–793 (2000). [CrossRef]
  14. M. L. Norman, R. E. Miller, D. R. Worsnop, “Ternary H2SO4/HNO3/H2O optical constants: new measurements from aerosol spectroscopy under stratospheric conditions,” J. Phys. Chem. A 106, 6075–6083 (2002). [CrossRef]
  15. R. F. Niedziela, R. E. Miller, D. R. Worsnop, “Temperature- and frequency-dependent optical constants for nitric acid dihydrate from aerosol spectroscopy,” J. Phys. Chem. A 102, 6477–6484 (1998). [CrossRef]
  16. L. J. Richwine, M. L. Clapp, R. E. Miller, D. R. Worsnop, “Complex refractive indices in the infrared of nitric-acid trihydrate aerosols,” Geophys. Res. Lett. 22, 2625–2628 (1995). [CrossRef]
  17. M. L. Clapp, R. E. Miller, D. R. Worsnop, “Frequency-dependent optical constants of water ice obtained directly from aerosol extinction spectra,” J. Phys. Chem. 99, 6317–6326 (1995). [CrossRef]
  18. A. K. Bertram, D. B. Dickens, J. J. Sloan, “Supercooling of type 1 polar stratospheric clouds: the freezing of submicrometer nitric acid aerosols having HNO3 mol fractions of less than 0.5,” J. Geophys. Res. Atmos. 105, 9283–9290 (2000). [CrossRef]
  19. C. L. Lawson, R. J. Hanson, Solving Least-Squares Problems (Prentice-Hall, 1974).
  20. R. J. Le Roy, “Uncertainty, sensitivity, convergence, and rounding in performing and reporting least-squares fits,” J. Mol. Spectrosc. 191, 223–231 (1998). [CrossRef] [PubMed]
  21. C. Bingen, D. Fussen, F. Vanhellemont, “A global climatology of stratospheric aerosols using SAGE II data: toward a systematic characterization of the aerosol evolution,” Planet. Ionosph. Atmos. Incl. Cira 34, 1763–1767 (2004).
  22. T. Deshler, M. E. Hervig, D. J. Hofmann, J. M. Rosen, J. B. Liley, “Thirty years of in situ stratospheric aerosol size distribution measurements from Laramie, Wyoming (41 deg N), using balloonborne instruments,” J. Geophys. Res. Atmos.108, 4167-doi: (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited