OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 23 — Aug. 10, 2005
  • pp: 4814–4821

Phase extraction from a single fringe pattern based on guidance of an extreme map

Chenggen Quan, Cho Jui Tay, Fujun Yang, and Xiaoyuan He  »View Author Affiliations

Applied Optics, Vol. 44, Issue 23, pp. 4814-4821 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (2648 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method for automatic phase extraction from a single fringe pattern based on the guidance of an extreme map is introduced. The method uses an adaptive weighted filter to reduce noise and enhance contrast and to locate the fringe extremes. Wrapped phase values are calculated by use of an arccosine function obtained from the extreme map. With this method, wrapped phase values can be efficiently demodulated from a single fringe pattern without the need for assigning fringe order or interpolating fractional fringe order. The validity of the method is demonstrated by use of closed-fringe patterns generated by digital speckle interferometry.

© 2005 Optical Society of America

OCIS Codes
(070.6110) Fourier optics and signal processing : Spatial filtering
(100.2650) Image processing : Fringe analysis
(100.5010) Image processing : Pattern recognition
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6160) Instrumentation, measurement, and metrology : Speckle interferometry

Original Manuscript: August 18, 2004
Revised Manuscript: November 24, 2004
Manuscript Accepted: January 18, 2005
Published: August 10, 2005

Chenggen Quan, Cho Jui Tay, Fujun Yang, and Xiaoyuan He, "Phase extraction from a single fringe pattern based on guidance of an extreme map," Appl. Opt. 44, 4814-4821 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  2. T. Kreis, “Digital holographic interference-phase measurement using the Fourier-transform method,” J. Opt. Soc. Am. A 3, 847–855 (1986). [CrossRef]
  3. Z. Ge, F. Kobayashi, S. Matsuda, M. Taketa, “Coordinate-transform technique for closed-fringe analysis by the Fourier-transform method,” Appl. Opt. 40, 1649–1657 (2001). [CrossRef]
  4. M. Servin, R. Rodriguez-Vera, “Two dimensional phase locked loop demodulation of carrier frequency interferograms,” J. Mod. Opt. 40, 2087–2094 (1993). [CrossRef]
  5. M. Servin, J. L. Marroquin, F. J. Cuevas, “Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique,” Appl. Opt. 36, 4540–4548 (1997). [CrossRef] [PubMed]
  6. M. Servin, J. L. Marroquin, F. J. Cuevas, “Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms,” J. Opt. Soc. Am. A 18, 689–695 (2001). [CrossRef]
  7. J. L. Marroquin, R. Rodriguez-Vera, M. Servin, “Local phase from local orientation by solution of a sequence of linear systems,” J. Opt. Soc. Am. A 15, 1536–1544 (1998). [CrossRef]
  8. J. L. Marroquin, M. Rivera, S. Botello, R. Rodriguez-Vera, M. Servin, “Regularization methods for processing fringe-pattern images,” Appl. Opt. 38, 788–794 (1999). [CrossRef]
  9. P. L. Ransom, J. V. Kokal, “Interferogram analysis by a modified sinusoid fitting technique,” Appl. Opt. 25, 4199–4204 (1986). [CrossRef] [PubMed]
  10. W. Joo, S. S. Cha, “Automated interferogram analysis based on an integrated expert system,” Appl. Opt. 34, 7486–7496 (1995). [CrossRef] [PubMed]
  11. E. Yu, S. S. Cha, “Two-dimensional regression for interferometric phase extraction,” Appl. Opt. 37, 1370–1376 (1998). [CrossRef]
  12. F. J. Cuevas, M. Servin, O. N. Stavroudis, R. Rodriguez-Vera, “Multi-layer neural network applied to phase and depth recovery from fringe patterns,” Opt. Commun. 181, 239–259 (2000). [CrossRef]
  13. F. J. Cuevas, J. H. Sossa-Azuela, M. Servin, “A parametric method applied to phase recovery from a fringe pattern based on genetic algorithm,” Opt. Commun. 203, 213–223 (2002). [CrossRef]
  14. R. S. Lin, Y. C. Hsueh, “Multichannel filtering by gradient information,” Signal Process. 80, 279–293 (2000). [CrossRef]
  15. S. Guillon, P. Balou, M. Najim, N. Keskes, “Adaptive nonlinear filters for 2D and 3D image enhancement,” Signal Process. 67, 237–254 (1998). [CrossRef]
  16. M. Spann, A. Nieminen, “Adaptive Guassian weighted filtering for image segmentation,” Pattern Recogn. Lett. 8, 251–255 (1998). [CrossRef]
  17. G. T. Reid, “Image processing techniques for fringe pattern analysis,” in Advanced Processing of Semiconductor Devices II,H. G. Craighead, J. Narayan, eds., Proc. SPIE945, 468–477 (1988).
  18. H. A. Vrooman, A. Mass, “Interferogram analysis using image processing techniques,” in Interferometry ’89,Z. Jaroszewicz, M. Pluta, eds., Proc. SPIE1121, 655–659 (1989). [CrossRef]
  19. T. Yatagai, “Intensity based analysis methods,” in Interferogram Analysis, Digital Fringe Pattern Measurement Techniques,D. W. Robinson, G. T. Reid, eds. (Institute of Physics Publishing, 1993), p. 72.
  20. J. L. Marroquin, “Deterministic interactive particle models for image processing and computer graphics,” Comput. Vis. Graph. Image Process. 55, 408–417 (1993).
  21. D. Malacara, M. Serven, Z. Malacara, Interferogram Analysis for Optical Testing (Marcel Dekker, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited