Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Beam expansion in thermo-optic-effect-induced total internal reflection and its applications in optical switches

Not Accessible

Your library or personal account may give you access

Abstract

The beam-propagation characteristics of the total internal reflection (TIR) induced by the thermo-optic effect are investigated. Based on the Fourier heat-transmission principle and the variable separation method, we derive an analytical transient expression of the thermal field for general thermo-optic devices. With the analytical expression, the time response and steady-state temperature distribution of thermo-optic devices are presented. The beam expansion rule of TIR in the thermal field is developed mathematically, and a quantitative calculation is given as well. To illustrate the application of the rule, an X-junction 2 × 2 TIR switch with high reflection efficiency is designed through theoretical calculation. The simulation shows that the structure exhibits a high reflection coefficient; the reflection loss is only −0.76 dB. The simulation results agree well with the theoretical calculation.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Mode quasi-degeneracy and beam reflection in the total-internal-reflection optical waveguide switch

Hui Yu, Xiaoqing Jiang, Jianyi Yang, Jiate Zhao, Wei Qi, and Minghua Wang
J. Opt. Soc. Am. B 25(10) 1568-1575 (2008)

Nonblocking 3 × 3 polymer thermo-optic switch array based on total-internal-reflection effect

Lucheng Qv, Jingwen Sun, Hongjun Gu, Jian Sun, Xibin Wang, Yunji Yi, Xiaoqiang Sun, Eric Cassan, Fei Wang, and Daming Zhang
Appl. Opt. 54(28) 8344-8349 (2015)

Low-power total internal reflection thermo-optic switch based on hybrid SiON-polymer X-junction waveguides

Qian Qian Song, Kai Xin Chen, Ling Fang Wang, Jia Qi Guo, Shuo Chen, and Tian Xiang Zheng
Appl. Opt. 57(33) 9809-9813 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.