OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 23 — Aug. 10, 2005
  • pp: 4860–4869

Interframe intensity correlation matrix for self-calibration in phase-shifting interferometry

Hae Young Yun and Chung Ki Hong  »View Author Affiliations

Applied Optics, Vol. 44, Issue 23, pp. 4860-4869 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1733 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new method of estimating reference phase shifts in phase-shifting interferometry is proposed. The reference phase shifts are determined from a matrix that represents the interframe intensity correlation (IIC) of phase-shifted interferograms. The root-mean-square error of intensity measurement is automatically obtained from the smallest eigenvalue of the IIC matrix. The proposed method requires only four interferograms, unlike others, and can extract phase shifts reliably even from interferograms without well-defined fringes, such as speckle patterns. In typical conditions, reference phase shifts and wave-front phases can be determined with an accuracy of λ/6310 and λ/150, respectively. The validity of the method is tested by comparing it with other methods in experiments and simulations.

© 2005 Optical Society of America

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6160) Instrumentation, measurement, and metrology : Speckle interferometry

Original Manuscript: December 8, 2004
Revised Manuscript: April 4, 2005
Manuscript Accepted: April 4, 2005
Published: August 10, 2005

Hae Young Yun and Chung Ki Hong, "Interframe intensity correlation matrix for self-calibration in phase-shifting interferometry," Appl. Opt. 44, 4860-4869 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Carre, “Installation et utilisation du comparateur photoelectrique et interferentiel du Bureau International des Poids et Mesures,” Metrologia 2, 13–23 (1966). [CrossRef]
  2. J. H. Bruning, J. E. Gallagher, D. P. Rosenfeld, A. D. White, D. J. Brangaccio, D. R. Herriott, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974). [CrossRef] [PubMed]
  3. K. Creath, “Phase-shifting speckle interferometry,” Appl. Opt. 24, 3053–3058 (1985). [CrossRef] [PubMed]
  4. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef] [PubMed]
  5. T. Zhang, I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998). [CrossRef]
  6. B. C. Kim, S. W. Kim, “Absolute interferometer for three-dimensional profile measurement of rough surfaces,” Opt. Lett. 28, 528–530 (2003). [CrossRef] [PubMed]
  7. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432 (1983). [CrossRef] [PubMed]
  8. N. A. Ochoa, J. M. Huntley, “Convenient method for calibrating nonlinear phase modulators for use in phase shifting interferometry,” Opt. Eng. 37, 2501–2505 (1998). [CrossRef]
  9. Y. Y. Cheng, J. C. Wyant, “Phase shifter calibration in phase-shifting interferometry,” Appl. Opt. 24, 3049–3052 (1985). [CrossRef] [PubMed]
  10. H. van Brug, “Phase-step calibration for phase-stepped interferometry,” Appl. Opt. 38, 3549–3555 (1999). [CrossRef]
  11. X. Chen, M. Gramaglia, J. A. Yeazell, “Phase-shift calibration algorithm for phase-shifting interferometry,” J. Opt. Soc. Am. A 17, 2061–2066 (2000). [CrossRef]
  12. K. A. Goldberg, J. Bokor, “Fourier-transform method of phase-shift determination,” Appl. Opt. 40, 2886–2894 (2001). [CrossRef]
  13. K. Larkin, “A self-calibrating phase-shifting algorithm based on the natural demodulation of two-dimensional fringe patterns,” Opt. Express 9, 236–253 (2001). [CrossRef] [PubMed]
  14. J. L. Marroquin, M. Servin, R. Rodriguez Vera, “Adaptive quadrature filters for multiple phase-stepping images,” Opt. Lett. 23, 238–240 (1998). [CrossRef]
  15. K. Okada, A. Sato, J. Tsujiuchi, “Simultaneous calculation of phase distribution and scanning phase in phase shifting interferometry,” Opt. Commun. 84, 118–124 (1991). [CrossRef]
  16. I.-B. Kong, S.-W. Kim, “General algorithm of phase-shifting interferometry by iterative least-squares fitting,” Opt. Eng. 34, 183–188 (1995). [CrossRef]
  17. S.-W. Kim, M.-G. Kang, G.-S. Han, “Accelerated phase-measuring algorithm of least squares for phase-shifting interferometry,” Opt. Eng. 36, 3101–3106 (1997). [CrossRef]
  18. H. Huang, M. Itoh, T. Yatagai, “Phase retrieval of phase-shifting interferometry with iterative least-squares fitting algorithm: experiments,” Opt. Rev. 6, 196–203 (1999). [CrossRef]
  19. L. Z. Cai, Q. Liu, X. L. Yang, “Phase-shift extraction and wave-front reconstruction in phase-shifting interferometry with arbitrary phase steps,” Opt. Lett. 28, 1808–1810 (2003). [CrossRef] [PubMed]
  20. G.-S. Han, S.-W. Kim, “Numerical correction of reference phases in phase-shifting interferometry by iterative least-squares fitting,” Appl. Opt. 33, 7321–7325 (1994). [CrossRef] [PubMed]
  21. G. Strang, Linear Algebra and Its Applications, 3rd ed. (Harcourt Brace Jovanovich, 1988), pp. 201–202.
  22. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, 1988), pp. 408–455.
  23. Ref. 22, pp. 408–412.
  24. Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt. 35, 51–60 (1996). [CrossRef] [PubMed]
  25. Y. Surrel, “Additive noise effect in digital phase detection,” Appl. Opt. 36, 271–276 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited