OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 23 — Aug. 10, 2005
  • pp: 4922–4929

Deterministic beam fanning in Fe-doped stoichiometric lithium niobate crystals

Sanjeev Solanki, Xuewu Xu, and Tow-Chong Chong  »View Author Affiliations


Applied Optics, Vol. 44, Issue 23, pp. 4922-4929 (2005)
http://dx.doi.org/10.1364/AO.44.004922


View Full Text Article

Enhanced HTML    Acrobat PDF (463 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigated the beam-fanning effect in Fe-doped stoichiometric lithium niobate (Fe:SLN) crystals that were grown by the top-seeded solution growth method. Deterministic beam fanning (DBF) was measured in Z-cut Fe:SLN crystal for incident light propagating along the c+ and c axes. The dependence of beam-fanning factors on incident power density was also studied. The experimental results of DBF in the Z-cut Fe:SLN crystal were in good agreement with a theoretical simulation based on a two-wave mixing model. The results compared with those for Fe-doped congruent lithium niobate crystals indicate that the beam-fanning process in Fe:SLN is deterministic because of its much-reduced intrinsic density of defects.

© 2005 Optical Society of America

OCIS Codes
(160.2900) Materials : Optical storage materials
(160.3730) Materials : Lithium niobate
(160.5320) Materials : Photorefractive materials
(160.6990) Materials : Transition-metal-doped materials

History
Original Manuscript: December 14, 2004
Revised Manuscript: March 30, 2005
Manuscript Accepted: April 2, 2005
Published: August 10, 2005

Citation
Sanjeev Solanki, Xuewu Xu, and Tow-Chong Chong, "Deterministic beam fanning in Fe-doped stoichiometric lithium niobate crystals," Appl. Opt. 44, 4922-4929 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-23-4922


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499–501 (1999). [CrossRef]
  2. L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998). [CrossRef] [PubMed]
  3. G. Malovichki, V. Grachev, O. Schirmer, “Interrelation of intrinsic and extrinsic defects—congruent, stoichiometric, and regularly ordered lithium niobate,” Appl. Phys. B 68, 785–793 (1999). [CrossRef]
  4. J. J. Liu, P. P. Banerjee, Q. W. Song, “Role of diffusive, photovoltaic, and thermal effects in beam fanning in LiNbO3,” J. Opt. Soc. Am. B 11, 1688–1693 (1994). [CrossRef]
  5. V. V. Obukhovskii, A. V. Stoyanov, V. V. Lemeshko, “Photoinduced scattering of light by fluctuations of photoelectric parameters of a medium,” Sov. J. Quantum Electron. 17, 64–68 (1987). [CrossRef]
  6. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).
  7. X. Zhang, J. Xu, S. Liu, H. Huang, J. Wolfsberger, X. Chen, G. Zhang, “Temporal evolution of beam fanning in LiNbO3:Fe crystals,” Appl. Opt. 40, 683–686 (2001). [CrossRef]
  8. D. C. Jones, G. Cook, “Non-reciprocal transmission through photorefractive crystals in the transient regime using reflection geometry,” Opt. Commun. 180, 391–402 (2000). [CrossRef]
  9. S. G. Odoulov, B. I. Sturman, E. Shamonina, K. H. Ringhofer, “Stochastic photorefractive backscattering from LiNbO3 crystals,” Opt. Lett. 21, 854–856 (1996). [CrossRef] [PubMed]
  10. R. Grousson, S. Mallick, S. Odoulov, “Amplified backward scattering in LiNbO3:Fe,” Opt. Commun. 51, 342–346 (1984). [CrossRef]
  11. G. Zhang, Q. X. Li, P. P. Ho, S. Liu, Z. Kang, R. R. Alfano, “Dependence of specklon size on the laser beam size via photoinduced light scattering in LiNbO3:Fe,” Appl. Opt. 25, 2955–2959 (1986). [CrossRef]
  12. S. Solanki, T. C. Chong, X. W. Xu, “Flux growth and morphology study of stoichiometric lithium niobate crystals,” J. Cryst. Growth 250, 134–138 (2003). [CrossRef]
  13. M. Wohlecke, G. Corradi, K. Betzler, “Optical methods to characterize the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63, 323–330 (1996). [CrossRef]
  14. V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 22, 742–756 (1979). [CrossRef]
  15. I. F. Kanaev, V. K. Malinovskii, B. I. Sturman, “Induced reflection and bleaching effects in electro-optic crystals,” Sov. Phys. JETP 47, 834–837 (1978).
  16. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. 1. Steady state,” Ferroelectrics 22, 949–960 (1979). [CrossRef]
  17. D. G. Cook, C. J. Finnan, D. C. Jones, “High optical gain using counterpropagating beams in iron and terbium-doped photorefractive lithium niobate,” Appl. Phys. B 68, 911–916 (1999). [CrossRef]
  18. L. Solymar, D. J. Webb, A. G. Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, 1996).
  19. D. Liu, L. Liu, Y. Liu, C. Zhou, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000). [CrossRef]
  20. G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M= Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited