OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 23 — Aug. 10, 2005
  • pp: 4965–4971

Microfabricated solid-state dye lasers based on a photodefinable polymer

Daniel Nilsson, Søren Balslev, Misha M. Gregersen, and Anders Kristensen  »View Author Affiliations


Applied Optics, Vol. 44, Issue 23, pp. 4965-4971 (2005)
http://dx.doi.org/10.1364/AO.44.004965


View Full Text Article

Enhanced HTML    Acrobat PDF (682 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a solid polymer dye laser based on a single-mode planar waveguide. The all-polymer device is self-contained in the photodefinable polymer SU-8 and may therefore easily be placed on any substrate and be integrated with polymer-based systems. We use as the active medium for the laser the commercially available laser dye Rhodamine 6G, which is incorporated into the SU-8 polymer matrix. The single-mode slab waveguide is formed by three-step spin-coating deposition: a buffer layer of undoped SU-8, a core layer of SU-8 doped with Rhodamine, and a cladding layer of undoped SU-8.

© 2005 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.2050) Lasers and laser optics : Dye lasers
(140.3380) Lasers and laser optics : Laser materials
(140.3390) Lasers and laser optics : Laser materials processing
(140.3410) Lasers and laser optics : Laser resonators
(140.3580) Lasers and laser optics : Lasers, solid-state

History
Original Manuscript: November 29, 2004
Revised Manuscript: March 9, 2005
Manuscript Accepted: March 14, 2005
Published: August 10, 2005

Citation
Daniel Nilsson, Søren Balslev, Misha M. Gregersen, and Anders Kristensen, "Microfabricated solid-state dye lasers based on a photodefinable polymer," Appl. Opt. 44, 4965-4971 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-23-4965


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. P. Schäfer, Dye Lasers (Springer-Verlag, 1973).
  2. B. H. Soffer, B. B. McFarland, “Continously tunable, narrow-band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967). [CrossRef]
  3. O. G. Peterson, B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate,” Appl. Phys. Lett. 12, 238–240 (1967). [CrossRef]
  4. S. Singh, V. R. Kanetkar, G. Sridhar, V. Muthuswamy, K. Raja, “Solid-state polymeric dye lasers,” J. Lum. 101, 285–291 (2003). [CrossRef]
  5. C. Hu, S. Kim, “Thin-film dye laser with etched cavity,” Appl. Phys. Lett. 29, 582–585 (1976). [CrossRef]
  6. Y. Li, M. Sasaki, K. Hane, “Fabrication and testing of solid polymer dye microcavity lasers based on PMMA micromolding,” J. Micromech. Microeng. 11, 234–238, (2001).
  7. Y. Oki, T. Yoshiura, Y. Chisaki, M. Maeda, “Fabrication of a distributed-feedback dye laser with a grating structure in its plastic waveguide,” Appl. Opt. 41, 5030–5035 (2002). [CrossRef] [PubMed]
  8. E. Verpoorte, “Chip vision-optics for microchips,” Lab Chip 3, 42N–52N (2003).
  9. R. G. Hunsperger, Integrated Optics: Theory and Technology, 5th ed. (Springer-Verlag, 2002). [CrossRef]
  10. K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharmain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995). [CrossRef]
  11. SU-8 10 and SU-8 thinner available from MicroChem Corp., www.microchem.com .
  12. Rhodamine 6G Cl and R4127 available from Sigma-Aldrich Co., www.sigmaaldrich.com .
  13. S. Kragh, A. Kristensen, “Miniaturized solid state lasers based on a photodefinable polymer,” in Proceedings of the 17th European Conference on Solid-State Transducers, Eurosensors 2003 (University of Minho, 2003), pp. 380–383.
  14. D. Nilsson, T. Nielsen, A. Kristensen, “Solid state microcavity dye lasers fabricated by nanoimprint lithography,” Rev. Sci. Instrum. 75, 4481–4486 (2004). [CrossRef]
  15. R. M. O’Connell, T. T. Saito, “Plastics for high-power laser application: a review,” Opt. Eng. 22, 393–399 (1983).
  16. S. Popov, “Dye photodestruction in a solid-state dye laser with a polymeric gain medium,” Appl. Opt. 37, 6449–6455 (1998). [CrossRef]
  17. A. Costela, I. Garcia-Moreno, R. Sastre, F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, “Photophysical and lasing properties of pyrromethene 567 dye in solid poly(trifluormethyl methacrylate) matrices with different degrees of crosslinking,” Appl. Phys. B 73, 19–24 (2001). [CrossRef]
  18. F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Laser action from Rhodamine 6G-doped poly (2-hydroxethyl methacrylate) matrices with different crosslinking degrees,” Chem. Phys. Lett. 209, 352–356 (1993). [CrossRef]
  19. K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Dyes in modified polymers: problems of photostability and conversion efficiency at high intensities,” J. Opt. Soc. Am. B 9143–151 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited