OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 23 — Aug. 10, 2005
  • pp: 4985–4994

Multibeam long-path differential optical absorption spectroscopy instrument: a device for simultaneous measurements along multiple light paths

Irene Pundt and Kai Uwe Mettendorf  »View Author Affiliations


Applied Optics, Vol. 44, Issue 23, pp. 4985-4994 (2005)
http://dx.doi.org/10.1364/AO.44.004985


View Full Text Article

Enhanced HTML    Acrobat PDF (759 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel long-path differential optical absorption spectroscopy (DOAS) apparatus for measuring tropospheric trace gases and the first results from its use are presented: We call it the multibeam instrument. It is the first active DOAS device that emits several light beams simultaneously through only one telescope and with only one lamp as a light source, allowing simultaneous measurement along multiple light paths. In contrast to conventional DOAS instruments, several small mirrors are positioned near the lamp, creating multiple virtual light sources that emit one light beam each in one specific direction. The possibility of error due to scattering between the light beams is negligible. The trace-gas detection limits of NO2, SO2, O3, and H2CO are similar to those of the traditional long-path DOAS instrument.

© 2005 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(280.1120) Remote sensing and sensors : Air pollution monitoring
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

History
Original Manuscript: July 29, 2004
Revised Manuscript: January 7, 2004
Manuscript Accepted: February 14, 2005
Published: August 10, 2005

Citation
Irene Pundt and Kai Uwe Mettendorf, "Multibeam long-path differential optical absorption spectroscopy instrument: a device for simultaneous measurements along multiple light paths," Appl. Opt. 44, 4985-4994 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-23-4985


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Platt, “Dry deposition of SO2,” J. Atmos. Environ. 12, 363–367 (1978). [CrossRef]
  2. U. Platt, D. Perner, “An instrument for the spectroscopic measurement of trace substances in the atmosphere,” Z. Anal. Chem. 317, 309–313 (1984). [CrossRef]
  3. U. Platt, D. Perner, H. Pätz, “Simultaneous measurement of atmospheric CH2O, O3, and NO2by differential optical absorption,” J. Geophys. Res. 84, 6329–6335 (1979). [CrossRef]
  4. U. Platt, D. Perner, “Measurements of atmospheric trace gases by long path differential UV/visible absorption spectroscopy,” Springer Ser. Opt. Sci. 39, 95–105 (1983).
  5. U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, Chemical Analysis Series Vol. 127, M. W. Sigrist, ed. (Wiley, 1994), pp. 27–84.
  6. A. Geyer, R. Ackermann, R. Dubois, B. Lohrmann, T. Müller, U. Platt, “Long-term observation of nitrate radicals in the continental boundary layer near Berlin,” J. Atmos. Environ. 35, 3619–3631 (2001). [CrossRef]
  7. G. Hübler, D. Perner, U. Platt, A. Toennissen, D. H. Ehalt, “Ground-level OH radical concentration: new measurements by optical absorption,” J. Geophys. Res. 89, 1309–1319 (1984). [CrossRef]
  8. C. Camy-Peyret, B. Bergqvist, B. Galle, M. Carleer, C. Clerbaux, R. Colin, C. Fayt, F. Goutail, M. Nunes-Pinharanda, J. P. Pommereau, M. Hausmann, U. Platt, I. Pundt, T. Rudolph, C. Hermans, P. C. Simon, A. C. Vandaele, J. M. C. Plane, N. Smith, “Intercomparison of instruments for tropospheric measurements using differential optical absorption spectroscopy,” J. Atmos. Chem. 23, 51–80 (1996). [CrossRef]
  9. H. Axelsson, B. Galle, K. Gustavsson, P. Regnarsson, M. Rudin, “A transmitting/receiving telescope for DOAS measurements using the retroreflector technique,” in Optical Remote Sensing of the Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, 1990), pp. 641–644.
  10. I. Pundt, K. U. Mettendorf, T. Laepple, V. Knab, P. Xie, J. Lösch, C. v. Friedeburg, U. Platt, T. Wagner, “Measurements of trace-gas distributions using long-path DOAS tomography during the motorway campaign BAB II: experimental setup and results for NO2,” J. Atmos. Environ. 39, 967–975 (2005). [CrossRef]
  11. T. Laepple, V. Knab, K. U. Mettendorf, I. Pundt, “Long-path DOAS tomography on a motorway exhaust gas plume: numerical studies and application to data from the BAB II campaign,” Atmos. Chem. Phys. 4, 1323–1342 (2004). [CrossRef]
  12. R. A. Hashmonay, M. G. Yost, C.-F. Wu, “Computed tomography of air pollutants using radial scanning path-integrated optical remote sensing,” J. Atmos. Environ. 33, 267–274 (1999). [CrossRef]
  13. P. N. Price, “Pollutant tomography using integrated concentration data from nonintersecting optical paths,” J. Atmos. Environ. 33, 275–280 (1999). [CrossRef]
  14. U. Corsmeier, M. Kohler, B. Vogel, H. Vogel, F. Fiedler, “BAB II: a project to evaluate the accuracy of real world traffic emissions for a motorway,” submitted to J. Atmos. Environ.
  15. J. Stutz, “Messung der Konzentration troposphärischer Spurenstoffe mittels Differentieller—Optischer-Absorptions-spektroskopie: Eine neue Generation von Geräten und Algorithmen,” Ph.D. dissertation (University of Heidelberg, 1996).
  16. C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordonez, A. S. H. Prevot, W. Junkermann, C. Astorga-Llorens, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. Loerzer, G. O. Braathen, R. Volkamer, “Intercomparison of four different in situ techniques for ambient formaldehyde measurements in an urban area,” Atmos. Chem. Phys. Discuss. 5, 2897–2945 (2005). [CrossRef]
  17. T. Gomer, T. Brauers, F. Heintz, J. Stutz, U. Platt, MFC Manual (University of Heidelberg, 1996).
  18. S. Voigt, J. Orphal, J. P. Burrows, “The temperature and pressure dependence of the absorption cross sections of NO2 in the 250–800-nm region measured by Fourier-transform spectroscopy,” J. Photochem. Photobiol. A. 149, 1–7 (2002). [CrossRef]
  19. J. Stutz, E. S. Kim, U. Platt, P. Bruno, C. Perrino, A. Febo, “UV-visible absorption cross section of nitrous acid,” J. Geophys. Res. 105(D11), 14585–14592 (2000). [CrossRef]
  20. R. Meller, G. K. Moortgat, “Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225–375 nm,” J. Geophys. Res. 201(D6), 7089–7101 (2000). [CrossRef]
  21. S. Voigt, J. Orphal, K. Bogumil, J. P. Burrows, “The temperature dependence (203–293 K of the absorption cross sections of O3 in the 230–850 nm region measured by Fourier-transform spectroscopy,” J. Photochem. Photobiol. A 143, 1–9 (2001). [CrossRef]
  22. C. Hermans, A. C. Vandaele, M. Carleer, S. Fally, R. Colin, A. Jenouvier, B. Coquart, M.-F. Merienne, “Absorption cross sections of atmospheric constituents: NO2, O2, and H2O,” Environ. Sci. Pollut. Res. 6, 151–158 (1999). [CrossRef]
  23. A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2 absorption cross section measurements in the UV using a Fourier-transform spectrometer (295 K),” J. Geophys. Res. 99, 25599–25605 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited