OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 24 — Aug. 22, 2005
  • pp: 5069–5075

High efficiency, high quality x-ray optic based on ellipsoidally bent highly oriented pyrolytic graphite crystal for ultrafast x-ray diffraction experiments

I. Uschmann, U. Nothelle, E. Förster, V. Arkadiev, N. Langhoff, A. Antonov, I. Grigorieva, R. Steinkopf, and A. Gebhardt  »View Author Affiliations

Applied Optics, Vol. 44, Issue 24, pp. 5069-5075 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1136 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By the use of a thin highly oriented pyrolytic graphite crystal (HOPG) bent to a high-performance ellipsoidal shape it was possible to focus monochromatic x-rays of 4.5 keV photon energy with an efficiency of 0.0033, which is 30 times larger than for previously used bent crystals. Isotropic Ti Kα radiation of a 150 μm source was focused onto a 450 μm spot. The size of the focal spot can be explained by broadening due to the mosaic crystal rocking curve. The rocking curve width (FWHM) of the thin graphite foil was determined to 0.11°. The estimated temporal broadening of an ultrashort Kα pulse by the crystal is not larger than 300 fs. These properties make the x-ray optic very attractive for ultrafast time-resolved x-ray measurements.

© 2005 Optical Society of America

OCIS Codes
(320.0320) Ultrafast optics : Ultrafast optics
(320.2250) Ultrafast optics : Femtosecond phenomena
(340.0340) X-ray optics : X-ray optics
(340.7440) X-ray optics : X-ray imaging
(340.7470) X-ray optics : X-ray mirrors
(340.7480) X-ray optics : X-rays, soft x-rays, extreme ultraviolet (EUV)

Original Manuscript: April 5, 2004
Manuscript Accepted: January 4, 2005
Published: August 20, 2005

I. Uschmann, U. Nothelle, E. Förster, V. Arkadiev, N. Langhoff, A. Antonov, I. Grigorieva, R. Steinkopf, and A. Gebhardt, "High efficiency, high quality x-ray optic based on ellipsoidally bent highly oriented pyrolytic graphite crystal for ultrafast x-ray diffraction experiments," Appl. Opt. 44, 5069-5075 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. Berreman, J. Stamatoff, S. J. Kennedy, “Doubly curved crystal point-focusing x-ray monochromators: geometrical and practical optics,” Appl. Opt. 16, 2081–2085 (1977). [CrossRef] [PubMed]
  2. E. Förster, I. Uschmann, K. Gäbel, “X-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Part. Beams 56, 135–148 (1991). [CrossRef]
  3. T. Missalla, I. Uschmann, E. Förster, G. Jenke, D. von der Linde, “Monochromatic focusing of subpicosecond x-ray pulses in the keV range,” Rev. Sci. Instrum. 70, 1288–1299 (1999). [CrossRef]
  4. I. Uschmann, P. Gibbon, D. Klöpfel, T. Feurer, E. Förster, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Rousse, C. Rischel, “X-ray emission produced by hot electrons from fs-laser produced plasma: diagnostics and application,” Laser Part. Beams 17, 671–680 (1999). [CrossRef]
  5. I. Uschmann, K. Fujita, I. Niki, R. Butzbach, H. Nishimura, J. Funakura, M. Nakai, E. Förster, K. Mima, “Time-resolved ten channel monochromatic imaging of inertial confinement fusion plasmas,” Appl. Opt. 39, 5865–5871 (2000). [CrossRef]
  6. Ch. Rischel, A. Rousse, I. Uschmann, P.-A. Albouy, J.-P. Geindre, P. Audebert, J.-C. Gauthier, E. Förster, J.-L. Martin, A. Antonetti, “Femtosecond time-resolved X-ray diffraction on laser-heated organic films,” Nature 390, 490–492 (1997). [CrossRef]
  7. A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001). [CrossRef] [PubMed]
  8. T. Feurer, A. Morak, I. Uschmann, Ch. Ziener, Ch. Reich, P. Gibbon, E. Förster, R. Sauerbrey, “Femtosecond silicon Kα pulses from laser produced plasmas,” Phys. Rev. E 65, 016412 (2001). [CrossRef]
  9. K. Sokolowski-Tinten, C. Blum, M. Kammler, M. Horn van Hoegen, D. von der Linde, I. Uschmann, E. Förster, “Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit,” Nature 422, 287–289 (2003). [CrossRef] [PubMed]
  10. A. W. Moore, “Highly oriented pyrolytic graphite,” Chem. Phys. Carbon 11, 69–187 (1973).
  11. A. A. Antonov, V. B. Baryshev, I. G. Grigorieva, G. N. Kulipanov, N. N. Shchipkov, “Focusing shaped pyrographice monochromators in synchrotron radiation experiments,” Nucl. Instrum. Methods Phys. Rev. A 308, 442–446 (1991). [CrossRef]
  12. I. G. Grigorieva, A. A. Antonov, “HOPG as powerful x-ray optics,” X-Ray Spectrom. 32, 64–68 (2003). [CrossRef]
  13. M. Ohler, M. Sanchez del Rio, A. Tuffannelli, M. Gambaccini, A. Taibi, A. Fantini, G. Pareschi, “X-ray topographic determination of the granular structure in a graphite mosaic crystal: a three-dimensional reconstruction,” J. Appl. Cryst. 33, 1023–1030 (2000), and references therein. [CrossRef]
  14. B. Beckhoff, “Röntgenfokussierung mit stark gekrümmten HOPG Kristallen in der energiedispersiven Röntgenfluoreszenzanalyse,” Ph. D. thesis (Universität Bremen, 1995).
  15. J. V. Gilfrich, D. B. Brown, P. G. Burkhalter, “Integral reflection coefficient of X-ray spectrometer crystals,” Appl. Spectrosc. 29, 322–326 (1975). [CrossRef]
  16. O. Brümmer, H. Stephanik, Dynamische Interferenztheorie (Akademische Verlagsgesellschaft Geest & Portig K.-G.Leipzig, 1976).
  17. M. Dirksmoeller, “Einzel und Doppelkristallanordnungen zur hochauflösenden röntgenoptischen Abbildung,” Ph.D. thesis (Friedrich-Schiller-Universität Jena, 1995).
  18. D. Boschetto, C. Rischel, I. Uschmann, J. Perez, S. Fourmaux, D. Hulin, E. Förster, A. Rousse, “Large-angle convergent-beam set up for femtosecond x-ray crystallography,” J. Appl. Cryst. 36, 348–349 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited