OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 24 — Aug. 22, 2005
  • pp: 5112–5119

Tuning of external-cavity semiconductor lasers with chirped diffraction gratings

Marc Duval, Gilles Fortin, Michel Piché, and Nathalie McCarthy  »View Author Affiliations

Applied Optics, Vol. 44, Issue 24, pp. 5112-5119 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (428 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel scheme of tunable semiconductor laser based on the use of a chirped grating in an external cavity. The chirped grating is fabricated using a simple holographic technique: two Gaussian beams having wavefronts with different radii of curvature are brought to interfere on a photoresist layer. The tuning properties of chirped gratings have been investigated with semiconductor lasers operated with an external cavity. With this type of grating positioned in Littrow configuration, the wavelength selection can be done by translating the grating without any need to rotate it. This cavity configuration provides a tunable output beam with an angle of propagation that is independent of the wavelength. The translation of chirped gratings was shown to tune a visible diode laser and an infrared diode laser over the same spectral band as the conventional tuning scheme where an unchirped grating is rotated.

© 2005 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(090.2890) Holography : Holographic optical elements
(140.2020) Lasers and laser optics : Diode lasers
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.5960) Lasers and laser optics : Semiconductor lasers
(220.1230) Optical design and fabrication : Apodization
(230.1950) Optical devices : Diffraction gratings

Original Manuscript: October 20, 2004
Revised Manuscript: March 24, 2005
Manuscript Accepted: March 30, 2005
Published: August 20, 2005

Marc Duval, Gilles Fortin, Michel Piché, and Nathalie McCarthy, "Tuning of external-cavity semiconductor lasers with chirped diffraction gratings," Appl. Opt. 44, 5112-5119 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Laurila, T. Joutsenoja, R. Hernberg, M. Kuittinen, “Tunable external-cavity diode laser at 650 nm based on a transmission diffraction grating,” Appl. Opt. 41, 5632–5637 (2002). [CrossRef] [PubMed]
  2. M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175–180 (2000). [CrossRef]
  3. L. Levin, “Mode-hop-free electro-optically tuned diode laser,” Opt. Lett. 27, 237–239 (2002). [CrossRef]
  4. B. Boggs, C. Greiner, T. Wang, H. Lin, T. W. Mossberg, “Simple high-coherence rapidly tunable external-cavity diode laser,” Opt. Lett. 23, 1906–1908 (1998). [CrossRef]
  5. C. Greiner, B. Boggs, T. Wang, T. W. Mossberg, “Laser frequency stabilization by means of optical self-heterodyne beat-frequency control,” Opt. Lett. 23, 1280–1282 (1998). [CrossRef]
  6. K. S. Repasky, G. W. Switzer, J. L. Carlsten, “Design and performance of a frequency chirped external cavity diode laser,” Rev. Sci. Instrum. 73, 3154–3159 (2002). [CrossRef]
  7. K. S. Repasky, J. D. Williams, J. L. Carlsten, E. J. Noonan, G. W. Switzer, “Tunable external-cavity diode laser based on integrated waveguide structures,” Opt. Eng. 42, 2229–2234 (2003). [CrossRef]
  8. K. C. Harvey, C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 910–912 (1991). [CrossRef] [PubMed]
  9. C. J. Hawthorn, K. P. Weber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001). [CrossRef]
  10. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986). See especially section 11.7.
  11. P. Zorabedian, W. R. Trunta, “Alignment-stabilized grating-tuned external-cavity semiconductor laser,” Opt. Lett. 15, 483–485 (1990). [CrossRef] [PubMed]
  12. A. C. Fey-den Boer, K. A. H. van Leeuwen, H. C. W. Beijerinck, C. Fort, F. S. Pavone, “Grating feedback in a 810 nm broad-area diode laser,” Appl. Phys. B 63, 117–120 (1996). [CrossRef]
  13. K. C. Harvey, C. J. Myatt, “External cavity diode laser using a grazing incidence diffraction grating,” Opt. Lett. 16, 910–912 (1991). [CrossRef] [PubMed]
  14. P. Gravilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-strip single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992). [CrossRef]
  15. C. Budzinski, R. Grunwald, I. Pinz, D. Schäfer, H. Schönnagel, “Apodized outcouplers for unstable resonators,” Proc. SPIE 1500, 264–274 (1991). [CrossRef]
  16. J.-F. Lepage, R. Massudi, G. Anctil, S. Gilbert, M. Piché, N. McCarthy, “Apodizing holographic gratings for the modal control of diode lasers,” Appl. Opt. 36, 4993–4998 (1997). [CrossRef] [PubMed]
  17. J.-F. Lepage, “Réseaux holographiques apodisants pour le contrôle modal des lasers à semi-conducteurs,” Master’s thesis (Université Laval, Québec, Canada, 1999).
  18. R. Massudi, “Modal control of laser resonators by conventional and holographic mirrors,” Ph.D. thesis (Université Laval, Québec, Canada, 1999).
  19. G. Loewen, M. Nevrière, D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Opt. 16, 2711–2721 (1977). [CrossRef] [PubMed]
  20. M. G. Moharam, T. K. Gaylord, “Rigourous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986). [CrossRef]
  21. C. Nì Allen, P. Finnie, S. Raymond, Z. R. Wasilewski, S. Fafard, “Inhomogeneous broadening in quantum dots with ternary aluminum alloys,” Appl. Phys. Lett. 79, 2701–2703 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited