OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 24 — Aug. 22, 2005
  • pp: 5120–5126

Injection-seeded pulsed Ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation

Klaus Ertel, Holger Linné, and Jens Bösenberg  »View Author Affiliations


Applied Optics, Vol. 44, Issue 24, pp. 5120-5126 (2005)
http://dx.doi.org/10.1364/AO.44.005120


View Full Text Article

Enhanced HTML    Acrobat PDF (145 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A gain-switched, single-frequency titanium–sapphire laser for atmospheric humidity measurements using the differential absorption lidar technique operating in the 820 nm wavelength region is described. The laser is pumped by a frequency-doubled, flashlamp-pumped Nd:YAG laser at a repetition rate of 50 Hz and injection seeded by two external-cavity-diode lasers. The system yields pulses with an energy of 15 mJ and high spectral purity. We describe a novel active injection-locking technique that avoids the problems of established methods like dither-lock or ramp-and-fire. Furthermore, our method opens the possibility to switch between two wavelengths for alternating shots, in contrast to most established techniques that only allow operation at one wavelength.

© 2005 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.7340) Atmospheric and oceanic optics : Water
(140.3520) Lasers and laser optics : Lasers, injection-locked
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.3590) Lasers and laser optics : Lasers, titanium
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar

History
Original Manuscript: November 23, 2004
Manuscript Accepted: January 7, 2005
Published: August 20, 2005

Citation
Klaus Ertel, Holger Linné, and Jens Bösenberg, "Injection-seeded pulsed Ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation," Appl. Opt. 44, 5120-5126 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-24-5120


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Walther, M. P. Larsen, E. S. Fry, “Generation of Fourier-transform-limited 35-ns pulses with a ramp-hold-fire seeding technique in a Ti:sapphire laser,” Appl. Opt. 40, 3046–3050 (2001). [CrossRef]
  2. K. Wendt, N. Trautmann, B. A. Bushaw, “Resonant laser ionization mass spectrometry: an alternative to AMS?,” Nucl. Instrum. Meth. B 174, 162–169 (2000). [CrossRef]
  3. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993). [CrossRef]
  4. C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique: theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4212 (1992). [CrossRef] [PubMed]
  5. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3732 (1983). [CrossRef] [PubMed]
  6. R. D. Schotland, “Some observations of the vertical profile of water vapor by means of a ground based optical radar,” in Proceedings of 4th Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966), pp. 273–283.
  7. J. Bösenberg, “Ground-based differential absorption lidar for water vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998). [CrossRef]
  8. A. D. White, “Frequency stabilization of gas lasers,” IEEE J. Quantum Electron. 1, 349–349 (1965). [CrossRef]
  9. T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy,” Opt. Commun. 35, 441–444 (1980). [CrossRef]
  10. S. W. Henderson, E. H. Yuen, E. S. Fry, “Fast resonance-detection technique for single frequency operation of injection seeded Nd:YAG lasers,” Opt. Lett. 11, 715–717 (1986). [CrossRef] [PubMed]
  11. L. A. Rahn, “Feedback stabilization of an injection-seeded Nd:YAG laser,” Appl. Opt. 24, 940–942 (1985). [CrossRef] [PubMed]
  12. G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165–172 (2002). [CrossRef]
  13. T. D. Raymond, A. V. Smith, “Injection-seeded titanium-doped-sapphire laser,” Opt. Lett. 16, 33–35 (1991). [CrossRef] [PubMed]
  14. C. E. Hamilton, “Single-frequency, injection-seeded Ti:sapphire ring laser with high temporal precision,” Opt. Lett. 17, 728–730 (1992). [CrossRef] [PubMed]
  15. G. R. Morrison, C. P. Rahlff, M. Ebrahimzadeh, M. H. Dunn, “A high-average-power all-solid-state, single-frequency Ti:sapphire laser,” in Conference on Lasers and Electro-Optics, Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 111–112.
  16. A. Ogino, M. Katsuragawa, K. Hakuta, “Single-frequency injection seeded pulsed Ti:Al2O3ring laser,” Jpn. J. Appl. Phys. 1 36, 5112–5115 (1997). [CrossRef]
  17. R. Schermaul, R. C. M. Learner, D. A. Newnham, J. Ballard, N. F. Zobov, D. Belmiloud, J. Tennyson, “The water vapor spectrum in the region 8800–15000 cm−1: experimental and theoretical studies for a new spectral line database. II. Linelist construction,” J. Mol. Spectrosc. 208, 43–50 (2001). [CrossRef] [PubMed]
  18. P. L. Ponsardin, E. V. Browell, “Measurements of H216O linestrengths and air-induced broadenings and shifts in the 815-nm spectral region,” J. Mol. Spectrosc. 185, 58–70 (1997). [CrossRef] [PubMed]
  19. S. Lehmann, “Ein Heterodyn-DIAL System für die simultane Messung von Wasserdampf und Vertikalwind: Aufbau und Erprobung,” Ph.D. Thesis (University of Hamburg, 2001).
  20. J. Bösenberg, H. Linné, “Laser remote sensing of the planetary boundary layer,” Meteorol. Z. 11, 233–240 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited