OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 25 — Sep. 1, 2005
  • pp: 5180–5189

Mode-locking external-cavity laser-diode sensor for displacement measurements of technical surfaces

Jürgen Czarske, Jasper Möbius, and Karsten Moldenhauer  »View Author Affiliations

Applied Optics, Vol. 44, Issue 25, pp. 5180-5189 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (250 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel laser sensor for position measurements of technical solid-state surfaces is proposed. An external Fabry–Perot laser cavity is assembled by use of an antireflection-coated laser diode together with the technical surface. Mode locking results from pumping the laser diode synchronously to the mode spacing of the cavity. The laser cavity length, i.e., the distance to the measurement object, is determined by evaluation of the modulation transfer function of the cavity by means of a phase-locked loop. The mode-locking external-cavity laser sensor incorporates a resonance effect that results in highly resolving position and displacement measurements. More than a factor-of-10 higher resolution than with conventional nonresonant sensing principles is achieved. Results of the displacement measurements of various technical surfaces are reported. Experimental and theoretical investigations are in good agreement.

© 2005 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology

Original Manuscript: September 27, 2004
Revised Manuscript: February 18, 2005
Manuscript Accepted: March 25, 2005
Published: September 1, 2005

Jürgen Czarske, Jasper Möbius, and Karsten Moldenhauer, "Mode-locking external-cavity laser-diode sensor for displacement measurements of technical surfaces," Appl. Opt. 44, 5180-5189 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. K. Tönshoff, I. Inasaki, eds., Sensors in Manufacturing (Wiley-VCH, 2001). [CrossRef]
  2. W. Steen, Laser Material Processing (Springer-Verlag, 1998). [CrossRef]
  3. G. Dorsch, G. Häusler, J. Herrmann, “Laser triangulation: fundamental uncertainty in distance measurement,” Appl. Opt. 33, 1306–1314 (1994). [CrossRef] [PubMed]
  4. K. Wesolowicz, R. Sampson, “Laser radar range imaging sensor for commercial applications,” in Laser Radar II,R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 152–161 (1987). [CrossRef]
  5. S. Pellegrini, G. Buller, J. Smith, A. Wallace, S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000). [CrossRef]
  6. H. Höfler, G. Schmidtke, “Three dimensional contouring by an optical radar system,” in Laser Dimensional Metrology: Recent Advances for Industrial Application,M. J. Downs, ed., Proc. SPIE2088, 82–87 (1993). [CrossRef]
  7. R. Juskaitis, T. Wilson, “Imaging in reciprocal fiber-optic based confocal scanning microscopes,” Opt. Commun. 92, 315–325 (1992). [CrossRef]
  8. C.-J. Kim, M.-S. Kim, C.-M. Chung, “Demonstration of auto-focus control by chromatic filtering,” in Proceedings of ICALEO 1998 (Laser Institute of America, 1998), pp. C226–C235.
  9. E. Fischer, E. Dalhoff, S. Heim, U. Hofbauer, H. Tiziani, “Absolute interferometric distance measurement using a FM-demodulation technique,” Appl. Opt. 34, 5589–5594 (1995). [CrossRef] [PubMed]
  10. H. Tiziani, A. Rothe, N. Maier, “Dual-wavelength heterodyne differential interferometer for high-precision measurements of reflective aspherical surfaces and step heights,” Appl. Opt. 35, 3525–3533 (1996). [CrossRef] [PubMed]
  11. T. Pfeifer, J. Thiel, “Absolutinterferometrie mit durchstimmbaren Halbleiterlasern,” Tech. Messen 60, 185–193 (1993).
  12. T. Dresel, G. Häusler, H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992). [CrossRef] [PubMed]
  13. R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980). [CrossRef]
  14. J. Kato, J. Yamato, N. Kikuchi, R. Furutani, S. Ozono, “Non-contact optical probing sensor—applying optical feedback effects in laser diodes,” Measurement 9, 146–152 (1991). [CrossRef]
  15. C. Morgan, M. Bordovsky, I. White, R. Griffiths, “Noncontact vibration sensors based on current modulated external cavity semiconductor lasers,” in IEE Proc. Optoelectron. 147, 413–416 (2000). [CrossRef]
  16. P.-T. Ho, L. A. Glasser, E. P. Ippen, H. A. Haus, “Picosecond pulse generation with a cw GaAlAs laser diode,” Appl. Phys. Lett. 33, 241–242 (1978). [CrossRef]
  17. R. Nietzke, J. Sacher, W. Elsässer, E. O. Göbel, “Mode-locking of a semiconductor diode laser by self-synchronizing optoelectronic feedback of the longitudinal mode beats,” Electron. Lett. 26, 1016–1018 (1990). [CrossRef]
  18. E. Voges, Bauelemente und Schaltungen, Vol. 1 of Hochfrequenztechnik (Hüthig, Heidelberg, 1991).
  19. X. Liu, Untersuchung eines neuartigen Abstandsmessverfahrens, basierend auf der Bestimmung von Laserpulswiederholfrequenzen (Fortschrittberichte VDI, 1996). Reihe 8: Meß-, Steuerungs- und Regelungstechnik, Nr. 566, ISBN 3-18-356608-7.
  20. J. van der Ziel, “Active mode locking of double heterostructure lasers in an external cavity,” J. Appl. Phys. 52, 4435–4446 (1981). [CrossRef]
  21. J. van der Ziel, “Generation of short optical pulses in semiconductor lasers by combined dc microwave current injection,” IEEE J. Quantum Electron. QE-18, 1340–1350 (1982). [CrossRef]
  22. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 259–264 (1982). [CrossRef]
  23. D. Hjelme, A. Mickelson, “Gain nonlinearities due to carrier density dependent dispersion in semiconductor lasers,” IEEE J. Quantum Electron. 25, 1625–1631 (1989). [CrossRef]
  24. B. Tromborg, J. Mork, “Nonlinear injection locking dynamics and the onset of coherence collapse in external cavity lasers,” IEEE J. Quantum Electron. 26, 642–654 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited