OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 25 — Sep. 1, 2005
  • pp: 5206–5214

Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry–Perot interferometers

Fabin Shen and Anbo Wang  »View Author Affiliations


Applied Optics, Vol. 44, Issue 25, pp. 5206-5214 (2005)
http://dx.doi.org/10.1364/AO.44.005206


View Full Text Article

Enhanced HTML    Acrobat PDF (167 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel signal-processing algorithm based on frequency estimation of the spectrogram of single-mode optical fiber Fabry–Perot interferometric sensors under white-light illumination is described. The frequency-estimation approach is based on linear regression of the instantaneous phase of an analytical signal, which can be obtained by preprocessing the original spectrogram with a bandpass filter. This method can be used for a relatively large cavity length without the need for spectrogram normalization to the spectrum of the light source and can be extended directly to a multiplexed sensor system. Experimental results show that the method can yield both absolute measurement with high resolution and a large dynamic range. Performance analysis shows that the method is tolerant of background noise and variations of the source spectrum.

© 2005 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry

History
Original Manuscript: February 15, 2005
Revised Manuscript: April 7, 2005
Manuscript Accepted: April 8, 2005
Published: September 1, 2005

Citation
Fabin Shen and Anbo Wang, "Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry–Perot interferometers," Appl. Opt. 44, 5206-5214 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-25-5206


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. T. Meggit, “Fiber optic white light interferometric sensors,” in Optical Fiber Sensor Technology, K. T. V. Grattan, B. T. Meggitt, eds. (Kluwer Academic, 2000), Vol. 4, 193–238. [CrossRef]
  2. S. Chen, A. W. Palmer, K. T. V. Grattan, B. T. Meggitt, “Digital signal-processing techniques for electronically scanned optical-fiber white-light interferometry,” Appl. Opt. 31, 6003–6010 (1992). [CrossRef] [PubMed]
  3. B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165 (2003). [CrossRef]
  4. R. Cortés, A. V. Khomenko, A. N. Starodumov, N. Arzate, L. A. Zenteno, “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 15, 268–272 (1998). [CrossRef]
  5. J. Tapia-Mercado, A. V. Khomenko, A. Garcia-Weidner, “Precision and sensitivity optimization for white-light inteferometric fiber-optic sensors,” J. Lightwave Technol. 19, 70–74 (2001). [CrossRef]
  6. J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985). [CrossRef]
  7. W. V. Sorin, D. M. Baney, “Multiplexed sensing using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 7, 917–919 (1995). [CrossRef]
  8. Y.-L. Lo, “Study of cross-talk of parallel Fabry Perot sensors in path-matching differential interferometry,” Opt. Lasers Eng. 31, 401–410 (1999). [CrossRef]
  9. C. E. Lee, H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron Lett. 24, 193–194 (1988). [CrossRef]
  10. C. E. Lee, H. F. Taylor, “In-line Fiber Fabry Perot interferometer with high reflectance internal mirrors,” J. Light-wave Technol. 10, 1376–1379 (1992). [CrossRef]
  11. K. A. Murphy, M. F. Gunther, A. Wang, R. O. Claus, A. M. Vengsarkar, “Extrinsic Fabry Perot optical fiber sensor,” in Eighth Optical Fiber Sensors Conference (Institute of Electrical and Electronics Engineers, 1992), pp. 193–196. [CrossRef]
  12. A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19, 1495–1501 (2001). [CrossRef]
  13. J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1268 (1995). [CrossRef]
  14. M. Han, Y. Zhang, F. Shen, G. R. Pickrell, A. Wang, “Signal-processing algorithm for white-light optical fiber extrinsic Fabry–Perot interferometric sensors,” Opt. Lett. 29, 1736–1378 (2004). [CrossRef] [PubMed]
  15. S. A. Tretter, “Estimating the frequency of a noisy sinusoid by linear regression,” IEEE Trans. Inf. Theory IT-31, 832–835 (1985). [CrossRef]
  16. S. M. Kay, “A fast and accurate single frequency estimator,” IEEE Trans. Acoust. Speech Signal Process. 37, 1987–1990 (1989). [CrossRef]
  17. D. C. Rife, R. R. Boorstyn, “Single-tone parameter estimation from discrete-time observations,” IEEE Trans. Inf. Theory IT-20, 591–598 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited