OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 25 — Sep. 1, 2005
  • pp: 5239–5248

Oxygen distribution and vascular injury in the mouse eye measured by phosphorescence-lifetime imaging

David F. Wilson, Sergei A. Vinogradov, Pavel Grosul, M. Noel Vaccarezza, Akiko Kuroki, and Jean Bennett  »View Author Affiliations

Applied Optics, Vol. 44, Issue 25, pp. 5239-5248 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (2415 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Maps of the oxygen distribution in the retina of the mouse eye were obtained by phosphorescence-lifetime imaging. Phosphor dissolved in the blood was excited by modulated light and phosphorescence imaged through microscope optics with an intensified-CCD camera. Phosphorescence lifetimes and oxygen pressures were calculated for each pixel of the images. The resolution was sufficient to permit the detection of anomalies that result in reduced oxygen pressures in individual retinal capillaries. High-resolution maps of oxygen distribution in the retina can provide greater understanding of the role of oxygen and vascular function in diseases of the eye.

© 2005 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging

Original Manuscript: January 4, 2005
Manuscript Accepted: February 28, 2005
Published: September 1, 2005

David F. Wilson, Sergei A. Vinogradov, Pavel Grosul, M. Noel Vaccarezza, Akiko Kuroki, and Jean Bennett, "Oxygen distribution and vascular injury in the mouse eye measured by phosphorescence-lifetime imaging," Appl. Opt. 44, 5239-5248 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. A. L’Esperance, W. A. James, “The eye and Diabetes mellitus,” in Diabetes Mellitus: Theory and Practice, M. Ellenberg, H. Rifkin, eds., 3rd ed. (Medical Examination, pp. 727–7571983).
  2. R. A. Linsenmeier, “Effects of light and darkness on oxygen distribution and consumption in the cat retina.” J. Gen. Physiol. 88, 521–542 (1986).
  3. R. A. Linsenmeier, R. D. Braun, M. A. McRipley, L. B. Padnick, J. Ahmed, D. L. Hatchell, D. S. McLeod, G. A. Lutty, “Retinal hypoxia in long-term diabetic cats,” Invest. Ophthalmol. Visual Sci. 39, 1647–1657 (1998).
  4. B. A. Berkowitz, R. A. Kowluru, R. N. Frank, T. S. Kern, T. C. Hohman, M. Prakash, “Subnormal retinal oxygenation response precedes diabetic-like retinopathy,” Invest. Ophthalmol. Visual Sci. 40, 2100–2105 (1999).
  5. A. M. Maguire, “Management of diabetic retinopathy,” J. Am. Osteopathic Assoc. 97, S6–S11 (1997).
  6. A. P. Adamis, J. W. Miller, M. T. Bernal, D. I. D’Amico, J. Folkman, T.-K. Yeo, K.-T. Yeo, “Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy,” Am. J. Ophthalmol. 118, 445–450 (1994). [PubMed]
  7. C. K. Dorey, S. Aouidid, X. Reynaud, H. F. Dvorak, L. F. Brown, “Correlation of vascular permeability factor/vascular endothelial growth factor with extraretinal neovascularization in the rat,” Arch. Ophthalmol. 114, 1210–1217 (1996); erratum Arch. Ophthalmol.115, 192 (1997). [CrossRef] [PubMed]
  8. J. W. Miller, A. P. Adamis, D. T. Shima, P. A. D’Amore, R. S. Moulton, M. S. O’Reilly, J. Folkman, H. F. Dvorak, L. F. Brown, B. Berse, T.-K. Yeo, K.-T. Yeo, “Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model,” Am. J. Pathol. 145, 574–584 (1994).
  9. E. A. Pierce, R. L. Avery, E. D. Foley, I. P. Aiello, L. E. H. Smith, “Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization,” Proc. Natl. Acad. Sci. USA 92, 905–909 (1995).
  10. J. Stone, T. Chan-Ling, J. Pe’re, A. Itin, H. Gnessin, E. Keshet, “Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity,” Invest Ophthalmol. Visual Sci. 37, 290–299 (1996).
  11. D. F. Wilson, W. L. Rumsey, T. I. Green, J. M. Vanderkooi, “The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen,” J. Biol. Chem. 263, 2712–2718 (1988). [PubMed]
  12. W. L. Rumsey, J. M. Vanderkooi, D. F. Wilson, “Imaging of phosphorescence: a novel method for measuring the distribution of oxygen in perfused tissue,” Science 241, 1649–1651 (1988). [CrossRef] [PubMed]
  13. R. D. Shonat, D. E. Wilson, G. E. Riva, S. D. Cranstoun, “Effect of acute increases in intraocular pressure on intravascular optic nerve head oxygen tension in cats,” Invest. Ophthalmol. Visual Sci. 33, 3174–3180 (1992).
  14. R. D. Shonat, D. E. Wilson, C. E. Riva, M. Pawlowski, “Oxygen distribution in the retinal and choroidal vessels of the cat as measured by a new phosphorescence imaging method,” Appl. Opt. 33, 3711–3718 (1992). [CrossRef]
  15. S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, “Noninvasive imaging of the distribution of oxygen in tissue in vivo using near infra-red phosphors,” Biophys. J. 70, 1609–1617 (1996).
  16. S. Blumenröder, A. J. Augustin, F. H. J. Koch, “The influence of intraocular pressure and systemic oxygen tension on the intravascular p O2 of the pig retina as measured with phosphorescence quenching,” Surv. Ophthalmol. 42, S118–S126 (1997). [CrossRef]
  17. R. D. Shonat, A. C. Kight, “Frequency domain imaging of oxygen tension in the mouse retina,” Adv. Exp. Med. Biol. 510, 243–247 (2003). [CrossRef]
  18. R. D. Shonat, A. C. Kight, “Oxygen tension imaging in the mouse retina,” Ann. Biomed. Eng. 31, 1084–1096 (2003b). [CrossRef] [PubMed]
  19. S. Blumenröder, A. J. Augustin, M. Spitznas, F. Koch, F. Grus, “Retino-choroidal oxygen imaging through a fundus camera,” Adv. Exp. Med. Biol. 388, 35–39 (1996). [CrossRef] [PubMed]
  20. S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dugan, D. F. Wilson, “Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples,” Rev. Sci. Instrum. 72, 3396–3406 (2001). [CrossRef]
  21. I. Dunphy, S. A. Vinogradov, D. F. Wilson, “Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen dependent quenching of phosphorescence,” Anal. Biochem. 310, 191–198 (2002). [CrossRef] [PubMed]
  22. V. Rozhkov, D. F. Wilson, S. Vinogradov, “Tuning oxygen quenching constants using dendritic encapsulation of phosphorescent Pd-porphyrins,” Polym. Mater. Sci. Eng. 85, 601–603 (2001).
  23. S. A. Vinogradov, D. F. Wilson, “Metallotetrabenzoporphyrins. New phosphorescent probes for oxygen measurements,” J. Chem. Soc. Perkin Trans. 2, 103–111 (1995). [CrossRef]
  24. S. L. Ziemer, W. M. F. Lee, S. A. Vinogradov, C. Sehgal, D. F. Wilson, “Oxygen distribution in murine tumors: characterization using oxygen dependent quenching of phosphorescence,” J. Appl. Physiol. 98, 1503–1510 (2005). [CrossRef]
  25. D. G. Buerk, A. G. Tsai, M. Intaglietta, P. C. Johnson, “Comparing tissue PO2 measurements by recessed microelectrode and phosphorescence quenching,” Adv. Exp. Biol. Med. 454, 367–374 (1998). [CrossRef]
  26. M. W. Dewhirst, E. T. Ong, R. D. Braun, B. Smith, B. Klitzman, S. M. Evans, D. F. Wilson, “Quantification of longitudinal tissue pO2 gradients in window chamber tumours: impact on tumour hypoxia,” Brit. J. Cancer 79, 1717–1722 (1999). [CrossRef]
  27. D. Y. Yu, V. A. Alder, S. J. Cringle, E. N. Su, M. Burns, “Intraretinal oxygen distribution in urethane-induced retinopathy in rats,” Am. J. Physiol. 274, H2009–H2017 (1998). [PubMed]
  28. D. Y. Yu, S. J. Cringle, V. Alder, E. N. Su, “Intraretinal oxygen distribution in the rat with graded systemic hyperoxia and hypercapnia,” Invest. Ophthalmol. Visual Sci. 40, 2082–2087 (1999).
  29. D. Y. Yu, S. Cringle, E.-N. Su, P. Ku, “Intraretinal oxygen levels before and after photoreceptor loss in the RCS rat,” Invest. Ophthalmol. Vis. Sci. 41, 3999–4006 (2000). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited