OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 25 — Sep. 1, 2005
  • pp: 5257–5272

Holographic method of cohering fiber tapped delay lines

Max Colice, Ted Weverka, Gregory Kriehn, Friso Schlottau, and Kelvin Wagner  »View Author Affiliations

Applied Optics, Vol. 44, Issue 25, pp. 5257-5272 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1381 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose, analyze, and demonstrate the use of a holographic method for cohering the output of a fiber tapped delay line (FTDL) that enables the use of fiber-remote optical modulators in coherent optical processing systems. We perform a theoretical examination of the phase-cohering process and show experimental results for a radio frequency (RF) spectrum analyzer that uses a lens to spatially Fourier transform the output of a holographically phase-cohered FTDL providing 50 MHz resolution and bandwidths approaching 3 GHz. Substantial improvements in bandwidth should be achievable with better fiber length-trimming accuracy and improvements in resolution can be obtained with longer fiber delay lines. We also analyze and demonstrate the use of a parallel holographic technique that compensates for polarization state scrambling induced by propagation through an array of single-mode fibers. Both the phase-cohering holography and the polarization fluctuation compensation can operate on hundreds of fibers in parallel, enabling both coherent optical signal processing with FTDLs and coherent fiber remoting of optically modulated RF signals from antenna arrays.

© 2005 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(090.7330) Holography : Volume gratings
(160.5320) Materials : Photorefractive materials

Original Manuscript: August 11, 2004
Revised Manuscript: March 7, 2005
Manuscript Accepted: March 8, 2005
Published: September 1, 2005

Max Colice, Ted Weverka, Gregory Kriehn, Friso Schlottau, and Kelvin Wagner, "Holographic method of cohering fiber tapped delay lines," Appl. Opt. 44, 5257-5272 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Ramaswami, K. N. Sivarajan, Optical Networks: a Practical Perspective (Morgan Kaufmann, 1998).
  2. J. T. Mayhan, A. J. Simmons, W. C. Cummings, “Wideband adaptive antenna nulling using tapped delay-lines,” IEEE Trans. Antennas Propag. AP-29, 923–936 (1981). [CrossRef]
  3. A. K. Ghosh, J. Trepka, “Design of fiber optic adaline neural networks,” Opt. Eng. 36, 843–848 (1997). [CrossRef]
  4. P. E. X. Silveira, G. S. Pati, K. H. Wagner, “Optical finite impulse response neural networks,” Appl. Opt. 41, 4162–4180 (2002). [CrossRef] [PubMed]
  5. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982). [CrossRef]
  6. K. Wilner, A. P. van den Heuvel, “Fiber-optic delay lines for microwave signal processing,” Proc. IEEE 64, 805–807 (1976). [CrossRef]
  7. K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. 33, 193–210 (1985). [CrossRef]
  8. E. Anemogiannis, R. P. Kenan, “Integrated optical architectures for tapped delay-lines,” J. Lightwave Technol. 8, 1167–1176 (1990). [CrossRef]
  9. D. Psaltis, J. Hong, “Adaptive acoustooptic filter,” Appl. Opt. 23, 3475–3481 (1984). [CrossRef] [PubMed]
  10. G. Kriehn, A. Kiruluta, P. E. X. Silveira, S. Weaver, S. Kraut, K. Wagner, R. T. Weverka, L. Griffiths, “Optical BEAMTAP beam-forming and jammer-nulling system for broadband phased-array antennas,” Appl. Opt. 39, 212–230 (2000). [CrossRef]
  11. I. C. Chang, D. L. Hecht, “Characteristics of acousto-optic devices for signal processors,” Opt. Eng. 21, 76–81 (1982). [CrossRef]
  12. R. S. Withers, A. C. Anderson, P. V. Wright, S. A. Reible, “Superconductive tapped delay lines for microwave analog signal processing,” IEEE Trans. Magn. M-19, 480–484 (1983). [CrossRef]
  13. T. W. Bristol, P. J. Hagon, “Programmable surface acoustic-wave tapped delay-lines,” IEEE Trans. Sonics Ultrason. SU-19, 414 (1972).
  14. J. W. Goodman, “Fan-in and fan-out with optical interconnections,” Opt. Acta 32, 1489–1496 (1985). [CrossRef]
  15. R. van Dijk, J. D. Bregman, A. Roodnat, F. E. van Vliet, “Photonic true time delay beamformer demonstration for a radio astronomical array antenna,” in IEEE International Topical Meeting on Microwave Photonics (IEEE, 2000), pp. 78–80.
  16. T. Turpin, “Spectrum analysis using optical processing.” Proc. IEEE 69, 80–92 (1981). [CrossRef]
  17. D. E. N. Davies, G. W. James, “Fiber-optic tapped delay line filter employing coherent optical processing,” Electron. Lett. 20, 95–97 (1984). [CrossRef]
  18. K. P. Jackson, G. Xiao, H. J. Shaw, “Coherent optical fibre delay-line processor,” Electron. Lett. 22, 1335–1337 (1986). [CrossRef]
  19. M. Shadaram, J. Medrano, S. A. Pappert, M. H. Berry, D. M. Gookin, “Technique for stabilizing the phase of the reference signals in analog fiber-optic links,” Appl. Opt. 34, 8283–8288 (1995). [CrossRef] [PubMed]
  20. R. T. Weverka, K. Wagner, A. Sarto, “Photorefractive processing for large adaptive phased arrays,” Appl. Opt. 35, 1344–1366 (1996). [CrossRef] [PubMed]
  21. J. E. Roman, L. T. Nichols, K. J. Williams, R. D. Esman, G. C. Tavik, M. Livingston, M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microwave Theory Tech. 46, 2317–2323 (1998). [CrossRef]
  22. A. Kiruluta, G. S. Pati, G. Kriehn, P. E. X. Silveira, A. W. Sarto, K. Wagner, “Spatio-temporal operator formalism for holographic recording and diffraction in a photorefractive-based true-time-delay phased-array processor,” Appl. Opt. 42, 5334–5350 (2003). [CrossRef] [PubMed]
  23. K. Noguchi, H. Miyazawa, O. Mitomi, “Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti:LiNbO3 optical modulator,” Electron. Lett. 34, 661–663 (1998). [CrossRef]
  24. D. T. Chen, H. R. Fetterman, A. T. Chen, W. H. Steier, L. R. Dalton, W. S. Wang, Y. Q. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997). [CrossRef]
  25. W. T. Rhodes, “Acousto-optic signal processing: convolution and correlation,” Proc. IEEE 69, 65–79 (1981). [CrossRef]
  26. A. W. Sarto, K. H. Wagner, R. T. Weverka, S. Weaver, E. K. Walge, “Wide angular aperture holograms in photorefractive crystals by the use of orthogonally polarized write and read beams,” Appl. Opt. 35, 5765–5775 (1996). [CrossRef] [PubMed]
  27. A. Brignon, R. Geffroy, J.-P. Huignard, M. H. Garrett, I. Mnushkina, “Experimental investigations of the photorefractive properties of rhodium-doped BaTiO3 at 1.06 μm,” Opt. Commun. 137, 311–316 (1997). [CrossRef]
  28. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).
  29. L. G. Kazovsky, “Phase- and polarization-diversity coherent optical techniques,” J. Lightwave Technol. 7, 279–292 (1989). [CrossRef]
  30. A. E. Willner, S. M. R. M. Nezam, L. S. Yan, Z. Q. Pan, M. C. Hauer, “Monitoring and control of polarization-related impairments in optical fiber systems,” J. Lightwave Technol. 22, 106–125 (2004). [CrossRef]
  31. A. P. Goutzoulis, D. K. Davies, “Hardware-compressive 2-D fiber optic delay line architecture for time steering of phase-array antennas,” Appl. Opt. 29, 5353–5359 (1990). [CrossRef] [PubMed]
  32. B. Moslehi, J. W. Goodman, M. Tur, H. J. Shaw, “Fibre-optic lattice signal processing,” Proc. IEEE 72, 909–930 (1984). [CrossRef]
  33. T. M. Turpin, F. F. Froehlich, D. B. Nichols, “Optical tapped delay line,” U.S. Patent6,608,721 (19August2003).
  34. P. E. X. Silveira, G. S. Pati, K. H. Wagner, “Optoelectronic implementation of a 256-channel sonar adaptive-array processor,” Appl. Opt. 43, 6421–6439 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited