OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 26 — Sep. 10, 2005
  • pp: 5415–5421

Porous silicon-based rugate filters

Eduardo Lorenzo, Claudio J. Oton, Néstor E. Capuj, Mher Ghulinyan, Daniel Navarro-Urrios, Zeno Gaburro, and Lorenzo Pavesi  »View Author Affiliations

Applied Optics, Vol. 44, Issue 26, pp. 5415-5421 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1025 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report an experimental study of porous silicon-based rugate filters. We performed filter apodization, following a half-apodization approach, which successfully attenuated the sidelobes at both sides of the photonic stop band. We achieved successful reduction of interference ripples through the insertion of index-matching layers on the first and last interfaces. An apodized dielectric mirror and a rugate filter are compared: Appreciable differences in the harmonic presence and stop-band performance were observed and are commented on. Bandwidth control when index contrast is modified is also demonstrated. Finally, the possibility of combining different rugate filter designs to attain more complex responses is demonstrated by the achievement of a multi-stop-band filter. Numerical calculations for design optimization and comparison with experimental data are reported too.

© 2005 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(220.1230) Optical design and fabrication : Apodization
(220.4610) Optical design and fabrication : Optical fabrication
(230.4170) Optical devices : Multilayers
(350.2460) Other areas of optics : Filters, interference

Original Manuscript: July 21, 2004
Revised Manuscript: February 11, 2005
Manuscript Accepted: April 29, 2005
Published: September 10, 2005

Eduardo Lorenzo, Claudio J. Oton, Néstor E. Capuj, Mher Ghulinyan, Daniel Navarro-Urrios, Zeno Gaburro, and Lorenzo Pavesi, "Porous silicon-based rugate filters," Appl. Opt. 44, 5415-5421 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Sailor, in Properties of Porous Silicon, L. T. Canham, ed. (IEE Inspec, 1997), p. 364.
  2. C. J. Oton, M. Ghulinyan, Z. Gaburro, P. Bettotti, L. Pavesi, L. Pancheri, S. Gialanella, N. E. Capuj, “Scattering rings as a tool for birefringence measurements in porous silicon,” J. Appl. Phys. 94, 6334–6340 (2003). [CrossRef]
  3. L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” Riv. Nuovo Cim. 20, 1–76 (1997). [CrossRef]
  4. V. Agarwal, J. A. del Rio, “Tailoring the photonic band gap of a porous silicon dielectric mirror,” Appl. Phys. Lett. 82, 1512–1514 (2003). [CrossRef]
  5. M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, L. Pavesi, “Free-standing porous silicon single and multiple cavities,” J. Appl. Phys. 93, 9724–9729 (2003). [CrossRef]
  6. P. Ferrand, R. Romestain, J. C. Vial, “Photonic band-gap properties of a porous silicon periodic planar waveguide,” Phys. Rev. B 63, 115106 (2001). [CrossRef]
  7. L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90, 055501 (2003). [CrossRef] [PubMed]
  8. R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, L. Pavesi, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003). [CrossRef]
  9. C. Mazzoleni, L. Pavesi, “Application to optical components of dielectric porous silicon multilayers,” Appl. Phys. Lett. 67, 2983–2985 (1995). [CrossRef]
  10. L. Pavesi, C. Mazzoleni, A. Tredicucci, V. Pellegrini, “Controlled photon emission in porous silicon microcavities,” Appl. Phys. Lett. 67, 3280–3282 (1995). [CrossRef]
  11. Y. Zhou, P. A. Snow, P. St, J. Russell, “Strong modification of photoluminescence in erbium-doped porous silicon microcavities,” Appl. Phys. Lett. 77, 2440–2442 (2000). [CrossRef]
  12. P. Allcock, P. A. Snow, “Time-resolved sensing of organic vapors in low modulating porous silicon dielectric mirrors,” J. Appl. Phys. 90, 5052–5057 (2001). [CrossRef]
  13. C. S. Bartholomew, M. D. Morrow, H. T. Betz, J. L. Grieser, R. A. Spence, N. P. Murarka, “Rugate filters by laser flash evaporation of SiOxNy on room-temperature polycarbonate,” J. Vac. Sci. Technol. A 6, 1703–1707 (1988). [CrossRef]
  14. W. J. Gunning, R. L. Hall, F. J. Woodberry, W. H. Southwell, N. S. Gluck, “Codeposition of continuous composition rugate filters,” Appl. Opt. 28, 2945–2948 (1989). [CrossRef] [PubMed]
  15. A. F. Jankowski, L. R. Schrawyer, P. L. Perry, “Reactive sputtering of molybdenum-oxide gradient-index filters,” J. Vac. Sci. Technol. A 9, 1184–1187 (1991). [CrossRef]
  16. P. L. Swart, P. V. Bulkin, B. M. Lacquet, “Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx,” Opt. Eng. 36, 1214–1219 (1997). [CrossRef]
  17. K. Kaminska, T. Brown, G. Beydaghyan, K. Robbie, “Rugate filters grown by glancing angle deposition,” in Applications of Photonic Technology 5, R. A. Lessard, G. A. Lampropoulos, G. W. Schini, eds., Proc. SPIE4833, 633–639 (2003). [CrossRef]
  18. A. J. McPhun, Q. H. Wu, I. J. Hodgkinson, “Birefringent rugate filters,” Electron. Lett. 34, 360–361 (1998). [CrossRef]
  19. M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hilbrich, W. Theiss, P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997). [CrossRef]
  20. F. Cunin, T. A. Schmedake, J. R. Link, Y. Li, J. Koh, S. Bhatia, M. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nature Mater. 1, 39–41 (2002). [CrossRef]
  21. K. Kaminska, T. Brown, G. Beydaghyan, K. Robbie, “Vacuum evaporated porous silicon photonic interference filters,” Appl. Opt. 42, 4212–4219 (2003). [CrossRef] [PubMed]
  22. B. G. Bovard, “Rugate filter theory: an overview,” Appl. Opt. 32, 5427–5442 (1993). [CrossRef] [PubMed]
  23. W. H. Southwell, R. L. Hall, “Rugate filter sidelobe suppression using quintic and rugated quintic matching layers,” Appl. Opt. 28, 2949–2951 (1989). [CrossRef] [PubMed]
  24. W. H. Southwell, “Using apodization functions to reduce sidelobes in rugate filters,” Appl. Opt. 28, 5091–5094 (1989). [CrossRef] [PubMed]
  25. C. C. Striemer, P. M. Fauchet, “Dynamic etching of silicon for broadband antireflection applications,” Appl. Phys. Lett. 81, 2980–2982 (2002). [CrossRef]
  26. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8, 584–586 (1983). [CrossRef] [PubMed]
  27. H. A. Abu-Safia, A. I. Al-Sharif, I. O. Abu Aljarayesh, “Rugate filter sidelobe suppression using half-apodization,” Appl. Opt. 32, 4831–4835 (1993). [CrossRef] [PubMed]
  28. A. R. Offer, J. Bland-Hawthorn, “Rugate filters for OH-suppressed imaging,” in Optical Astronomical Instrumentation, S. D’Odorics, ed., Proc. SPIE3355, 970–978 (1998). [CrossRef]
  29. W. H. Southwell, “Extended-bandwidth reflector designs by using wavelets,” Appl. Opt. 36, 314–318 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited