OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 26 — Sep. 10, 2005
  • pp: 5475–5482

Recording beam modulation during grating formation

Michael R. Gleeson, John V. Kelly, Feidhlim T. O’Neill, and John T. Sheridan  »View Author Affiliations


Applied Optics, Vol. 44, Issue 26, pp. 5475-5482 (2005)
http://dx.doi.org/10.1364/AO.44.005475


View Full Text Article

Enhanced HTML    Acrobat PDF (427 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Holography has been of increasing interest in recent years, with developments in many areas such as data storage and metrology. Photopolymer materials provide potentially good materials for holographic recording, as they are inexpensive and self-processing. Many experiments have been reported in the literature that describe the diffraction efficiency and angular selectivity of such materials. The majority of these reports discuss the performance of the holographic optical element after the recording stage. It has been observed, however, that sometimes, during exposure, the transmitted recording beam intensities vary with time. A simple phenomenological model is proposed to explain the beam modulation, which incorporates the growth of the phase grating, time-varying absorption effects, the mechanical motion of the plate, the growth of a lossy absorption grating during the recording process, and the effects of nonideal beam ratios.

© 2005 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.2890) Holography : Holographic optical elements
(090.2900) Holography : Optical storage materials
(160.5470) Materials : Polymers

History
Original Manuscript: September 10, 2004
Revised Manuscript: April 25, 2005
Manuscript Accepted: April 27, 2005
Published: September 10, 2005

Citation
Michael R. Gleeson, John V. Kelly, Feidhlim T. O’Neill, and John T. Sheridan, "Recording beam modulation during grating formation," Appl. Opt. 44, 5475-5482 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-26-5475


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Automised testing and recording of holographic optical element arrays,” Optik (Stuttgart) 111, 459–467 (2000).
  2. M. R. Gleeson, F. T. O’Neill, J. T. Sheridan, “Modulation of recording beams during grating formation,” in Photon Management, F. Wyrowski, ed., Proc. SPIE5456, 285–296 (2004). [CrossRef]
  3. M. R. Gleeson, F. T. O’Neill, J. T. Sheridan, “Recording beam modulation during grating formation,” in Organic Holographic Materials and Applications II, K. Meerholtz, ed., Proc. SPIE5521, 149–160 (2004). [CrossRef]
  4. W. L. Wilson, InPhase Technologies ( www.inphase-tech.com ; personal communications, 2003).
  5. J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001). [CrossRef]
  6. LabView User’s Manual (National Instruments Corporation, Austin, Tex., January1998), pp. 2–12.
  7. H. Kogelnik, “Coupled wave theory for thick holographic gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  8. S. Caron, J. J. A. Couture, R. A. Lessard, “Real time holographic reinforcement demonstrated by thionine/PVA photoreducible thin layers,” Appl. Opt. 29, 599–603 (1990). [CrossRef] [PubMed]
  9. S. Caron, R. A. Lessard, P. C. Roberge, “Photodarkening and partial photobleaching: application to dichromated gelatin,” Appl. Opt. 40, 707–713 (2001). [CrossRef]
  10. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939–1947 (2005). [CrossRef] [PubMed]
  11. A. V. Galstyan, R. S. Hakobyan, S. Harbour, T. Galstian, “Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable materials,” Electronic-Liq. Cryst. Commun. ( www.e-lc.org/docs/2004_05_05_11_13_17/ ).
  12. Y. L. Lee, C. H. Kwak, J. H. Kwon, Y. S. Im, O. S. Choe, “Observation of a fast formed absorbtion grating and a slowly formed phase grating in undeveloped dichromated gelatin,” Appl. Opt. 40, 3635–3639 (2001). [CrossRef]
  13. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, C. Neipp, “Temporal and non-ideal behaviour in photopolymers,” in Opto-Ireland 2005: Photonic Engineering, B. W. Bowe, G. Byrne, A. J. Flanigan, T. J. Glynn, J. Magee, G. M. O’Connor, R. O’Dowd, G. D. O’Sullivan, J. T. Sheridan, eds., Proc. SPIE5827, 95–106 (2005). [CrossRef]
  14. C. Carre, D. J. Lougnot, “Photopolymerizable material for holographic recording in the 450–550 nm domain,” J. Opt. (Paris) 21, 147–152 (1990). [CrossRef]
  15. F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A Pure Appl. Opt. 3, 20–25 (2001). [CrossRef]
  16. F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Thickness variation of self-processing acrylamide based photopolymer and reflection holography,” Opt. Eng. 40, 533–539 (2001). [CrossRef]
  17. R. R. A. Syms, Practical Volume Holography (Clarendon, 1990).
  18. E. Hecht, Optics, 2nd ed. (Addison-Wesley, 1987).
  19. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).
  20. www.edmundoptics.com .
  21. J. T. Sheridan, “Stacked volume holographic gratings: Part I, Transmission gratings in series,” Optik (Stuttgart) 95, 73–80 (1993).
  22. N. Capolla, R. A. Lessard, “Processing of holograms recorded in Methylene Blue sensitized gelatin,” Appl. Opt. 27, 3008–3012 (1998). [CrossRef]
  23. C. Solano, R. A. Lessard, P. C. Roberge, “Methylene Blue sensitized gelatin as a photosensitive medium for conventional and polarizing holography,” Appl. Opt. 26, 1989 (1987). [CrossRef] [PubMed]
  24. S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639–662 (2003). [CrossRef]
  25. J. T. Sheridan, J. R. Lawrence, “Non-local response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000). [CrossRef]
  26. J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, M. Ortuno, “Holographic photopolymer materials: nonlocal polymerization driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. B 22, 407–416 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited