OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 26 — Sep. 10, 2005
  • pp: 5565–5581

Multiple-scattering-based lidar retrieval: method and results of cloud probings

Luc R. Bissonnette, Gilles Roy, and Nathalie Roy  »View Author Affiliations

Applied Optics, Vol. 44, Issue 26, pp. 5565-5581 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (2319 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent developments in the search for a practical method of exploiting the multiple-scattering contributions to lidar returns are consolidated in a robust retrieval algorithm. The theoretical basis is the small-angle diffusion approximation. This implies that the algorithm is limited to media of sufficient optical thickness to generate measurable multiple scattering and to geometries for which the receiver’s footprint diameter is less than the scattering mean free path. The primary retrieval products are the range-resolved extinction coefficient and the effective particle diameter from which secondary products such as the particle volume mixing ratio and the extinction at other wavelengths can be calculated. We recall briefly earlier validation tests and present new data and analysis that demonstrate and quantify the solutions’ accuracy. The results show that systematic lidar probings with the proposed multiple-scattering technique can provide valuable physical information on cloud formation and evolution.

© 2005 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.3640) Remote sensing and sensors : Lidar
(290.1090) Scattering : Aerosol and cloud effects
(290.4210) Scattering : Multiple scattering

Original Manuscript: January 21, 2005
Manuscript Accepted: March 4, 2005
Published: September 10, 2005

Luc R. Bissonnette, Gilles Roy, and Nathalie Roy, "Multiple-scattering-based lidar retrieval: method and results of cloud probings," Appl. Opt. 44, 5565-5581 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Sassen, “The polarization lidar technique: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991). [CrossRef]
  2. J. D. Klett, “Stable analytical inversion solutions for processing lidar returns,” Appl. Opt. 20, 211–220 (1981). [CrossRef] [PubMed]
  3. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984). [CrossRef] [PubMed]
  4. L. R. Bissonnette, “Sensitivity analysis of lidar inversion algorithms,” Appl. Opt. 25, 2122–2125 (1986). [CrossRef] [PubMed]
  5. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Stroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983). [CrossRef] [PubMed]
  6. J. T. Stroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, P. J. Tryon, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2. Calibration and data analysis,” Appl. Opt. 22, 3725–3732 (1983). [CrossRef]
  7. A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990). [CrossRef] [PubMed]
  8. C. M. R. Platt, “Lidar and radiometer observations of cirrus clouds,” J. Atmos. Sci. 30, 1191–1204 (1973). [CrossRef]
  9. C. Flesia, P. Schwendimann, eds., “Topical feature on multiple-scattering lidar experiments,” Appl. Phys. B60, 315–362 (1995).
  10. L. R. Bissonnette, “Multiple-scattering lidar equation,” Appl. Opt. 35, 6449–6465 (1996). [CrossRef] [PubMed]
  11. L. R. Bissonnette, D. L. Hutt, “Multiply scattered aerosol lidar returns: inversion method and comparison with in situ measurements,” Appl. Opt. 34, 6959–6975 (1995). [CrossRef] [PubMed]
  12. L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, G. A. Isaac, “Multiple-scattering lidar retrieval method: tests on Monte-Carlo simulations and comparisons with in situ measurements,” Appl. Opt. 41, 6307–6324 (2002). [CrossRef] [PubMed]
  13. L. R. Bissonnette, D. L. Hutt, “Multiple scattering lidar,” Appl. Opt. 29, 5045–5046 (1990). [CrossRef] [PubMed]
  14. D. L. Hutt, L. R. Bissonnette, L. Durand, “Multiple field of view lidar returns from atmospheric aerosols,” Appl. Opt. 33, 2338–2348 (1994). [CrossRef] [PubMed]
  15. G. Roy, L. R. Bissonnette, C. Bastille, “Efficient field-of-view control for multiple-field-of-view lidar receivers,” in Proceedings of Nineteenth International Laser Radar Conference, (U.S. Government Printing Office, 1998), pp. 767–770.
  16. N. Roy, G. Roy, L. R. Bissonnette, J.-R. Simard, “Measurement of the azimuthal dependence of cross-polarized lidar returns and its relation to optical depth,” Appl. Opt. 43, 2777–2785 (2004). [CrossRef] [PubMed]
  17. L. R. Bissonnette, “Multiple scattering of narrow light beams in aerosols,” Appl. Phys. B 60, 315–323 (1995). [CrossRef]
  18. P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Monte-Carlo calculations of lidar returns: procedure and results,” Appl. Phys. B 60, 325–329 (1995). [CrossRef]
  19. D. M. Winker, L. R. Poole, “Monte-Carlo calculations of cloud returns for ground-based and space-based lidars,” Appl. Phys. B 60, 341–344 (1995). [CrossRef]
  20. E. W. Eloranta, “Practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37, 2464–2472 (1998). [CrossRef]
  21. J. A. Weinman, “Effects of multiple scattering on light pulses reflected by turbid atmospheres,” J. Atmos. Sci. 33, 1763–1771 (1976). [CrossRef]
  22. I. L. Katsev, E. P. Zege, A. S. Prikhach, I. N. Polonsky, “Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems,” J. Opt. Soc. Am. A 14, 1338–1346 (1997). [CrossRef]
  23. D. Deirmendjian, “Far-infrared and submillimeter wave attenuation by clouds and rain,” J. Appl. Meteorol. 14, 1584–1593 (1975). [CrossRef]
  24. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their physical properties,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  25. G. A. Isaac, J. K. Ayers, M. Bailey, L. R. Bissonnette, B. C. Bernstein, S. G. Cober, N. Dreidger, W. F. J. Evans, F. Fabry, A. Glazer, I. Gutelpe, J. Hallett, D. Hudak, A. V. Korolev, D. L. Marcotte, P. Minnis, J. Murray, L. Nguyen, T. P. Ratvasky, A. Reehorst, J. Reid, P. Rodriguez, T. Schneider, B. E. Sheppard, J. W. Strapp, M. Wolde, “First results from the Alliance Icing Research Study II,” paper AIAA-2005-0252, presented at the 43rd American Institute for Aeronautics and Astronautics Aerospace Sciences Meeting, Reno, Nev., 11–13 January 2005.
  26. J. L. Lumley, H. A. Panofsky, The Structure of Atmospheric Turbulence (Wiley-Interscience, 1964).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited