OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 26 — Sep. 10, 2005
  • pp: 5582–5593

Simultaneous and time-resolved temperature and relative CO2–N2 and O2–CO2–N2 concentration measurements with pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa

Martin Schenk, Thomas Seeger, and Alfred Leipertz  »View Author Affiliations


Applied Optics, Vol. 44, Issue 26, pp. 5582-5593 (2005)
http://dx.doi.org/10.1364/AO.44.005582


View Full Text Article

Enhanced HTML    Acrobat PDF (1424 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Pure rotational coherent anti-Stokes Raman-scattering (CARS) measurements have been performed in binary CO2–N2 and ternary CO2–O2–N2 mixtures in a temperature range between 300 and 773 K and pressures from 0.1 to 5 MPa to prove its potential for simultaneous single-shot thermometry and multispecies concentration measurements. In pressurized systems the CO2 component has a strong spectral influence on the pure rotational CARS spectra. Because of this dominance, pure rotational CARS proves to be a sensitive tool to measure in high-pressure combustion systems and the relative CO2–N2 concentration in the lower temperature range simultaneously with the temperature and the relative O2–N2 concentration. The evaluation of the spectra utilized a least-sum-squared differences fit of the spectral shape, weighted either constantly or inversely with respect to the normalized signal intensity. The results of the simultaneous temperature and relative CO2–N2 and O2–CO2–N2 concentration measurements provided a good accuracy and precision both in temperature and in concentrations. Because of the strong increase in the relative spectral contribution of CO2 with rising pressure, the precision of the CO2 concentration determination is in general significantly improved toward higher pressures, thus also clearly enhancing the CO2 detectability. The influence of temperature, O2 and CO2 concentration, pressure, and the evaluation techniques employed on both the accuracy and the precision is explained as well as their cross dependencies. The influence and limitations of the approximations used to model the CO2 molecule are discussed.

© 2005 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.6780) Instrumentation, measurement, and metrology : Temperature
(290.5860) Scattering : Scattering, Raman
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(300.6420) Spectroscopy : Spectroscopy, nonlinear

History
Original Manuscript: July 19, 2004
Revised Manuscript: February 8, 2005
Manuscript Accepted: March 9, 2005
Published: September 10, 2005

Citation
Martin Schenk, Thomas Seeger, and Alfred Leipertz, "Simultaneous and time-resolved temperature and relative CO2–N2 and O2–CO2–N2 concentration measurements with pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa," Appl. Opt. 44, 5582-5593 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-26-5582

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited