OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 27 — Sep. 20, 2005
  • pp: 5658–5666

Effects of absorbing particles on coronas and glories

Michael Vollmer  »View Author Affiliations

Applied Optics, Vol. 44, Issue 27, pp. 5658-5666 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (2578 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light scattering from small particles changes if the particles are absorbing. Whereas the effect is small for coronas and Bishop’s ring, glories show pronounced attenuation with increasing absorption. Results indicate suitable wavelength regions for studies of glory scattering from cloud tops. The behavior of core–shell particles could have applications for studying the atmosphere of Venus; in addition it provides more insight into the simple ray-path model of the glory.

© 2005 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(290.1350) Scattering : Backscattering
(290.4020) Scattering : Mie theory

Original Manuscript: December 16, 2004
Revised Manuscript: April 5, 2005
Manuscript Accepted: April 7, 2005
Published: September 20, 2005

Michael Vollmer, "Effects of absorbing particles on coronas and glories," Appl. Opt. 44, 5658-5666 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Khare, H. M. Nussenzveig, “Theory of the glory,” Phys. Rev. Lett. 38, 1279–1282 (1977). [CrossRef]
  2. H. M. Nussenzveig, “Complex angular momentum theory of the rainbow and the glory,” J. Opt. Soc. Am. 69, 1068–1079 (1979). [CrossRef]
  3. J. A. Lock, L. Yang, “Mie theory model of the corona,” Appl. Opt. 30, 3408–3414 (1991). [CrossRef] [PubMed]
  4. K. Sassen, “Corona producing cirrus cloud properties derived from polarization Lidar and photographic analyses,” Appl. Opt. 30, 3421–3428 (1991). [CrossRef] [PubMed]
  5. K. Sassen, G. G. Mace, J. Hallett, M. R. Poellot, “Corona producing cirrus clouds,” Appl. Opt. 37, 1477–1485 (1998). [CrossRef]
  6. J. A. Adam, “The mathematical physics of rainbows and glories,” Phys. Rep. 356, 229–365 (2002). [CrossRef]
  7. S. Gedzelman, “Simulating glories and cloudbows in color,” Appl. Opt. 42, 429–435 (2003). [CrossRef] [PubMed]
  8. S. Gedzelman, J. Lock, “Simulating coronas in color,” Appl. Opt. 42, 497–504 (2003). [CrossRef] [PubMed]
  9. Ph. Laven, “Simulation of rainbows, coronas, and glories by use of Mie theory,” Appl. Opt. 42, 436–444 (2003). [CrossRef] [PubMed]
  10. B. Mayer, M. Schröder, R. Preusker, L. Schüller, “Remote sensing of water cloud droplet size distributions using the backscatter glory: a case study,” Atmos. Chem. Phys. Discuss.4, 2239–2262 (2004); see www.atmos-chem-phys.org/acpd/2004-4-2239 . [CrossRef]
  11. L. Cowley, Ph. Laven, M. Vollmer, “Rings around sun or moon: coronae and diffraction,” Phys. Educ. 40, 51–59 (2005). [CrossRef]
  12. P. Parviainen, C. F. Bohren, V. Mäkelä, “Vertical elliptical coronas caused by pollen,” Appl. Opt. 33, 4548–4551 (1994). [CrossRef] [PubMed]
  13. E. Tränkle, B. Mielke, “Simulation and analysis of pollen coronas,” Appl. Opt. 33, 4552–4562 (1994). [CrossRef] [PubMed]
  14. F. M. Mims, “Solar corona caused by juniper pollen in Texas,” Appl. Opt. 37, 1486 (1998). [CrossRef]
  15. J. D. Spinhirne, T. Nakajima, “Glory of clouds in the near infrared,” Appl. Opt. 33, 4652–4662 (1994). [CrossRef] [PubMed]
  16. Ph. Laven, http://www.philiplaven.com .
  17. A. T. Young, “Venus cloud microphysics,” Icarus 56, 568–577 (1983). [CrossRef]
  18. Program available from M. Quinten. E-mail: ulmi.quinten@t-online.de.
  19. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Material Sciences (Springer, 1995). [CrossRef]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, 1985), Vol. 1.
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, 1991), Vol. 2.
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1998), Vol. 3.
  23. E. P. Shettle, Naval Research Laboratory, data from HITRAN database, see, e.g., http://cfa-www.harvard.edu/hitran//orwww.hitran.com .
  24. H. D. Downing, D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res. 80, 1656–1661 (1975). [CrossRef]
  25. F. A. Fischbach, “Interpretation of small angle light scattering maxima of single oriented microparticles,” Opt. Lett. 10, 523–525 (1985). [CrossRef] [PubMed]
  26. S. D. Gedzelman, “Visibility of halos and rainbows,” Appl. Opt. 19, 3068–3074 (1980). [CrossRef] [PubMed]
  27. D. Schulze-Makuch, D. H. Grinspoon, O. Abbas, L. N. Irwin, M. A. Bullock, “A sulfur-based survival strategy for putative phototrophic life in the venusian atmosphere,” Astrobiology 4, 11–18 (2004). [CrossRef] [PubMed]
  28. Information on the Venus express mission can be found at: http://www.esa.int/sci_mediacentre/venusexpress_factsheet.html ; see also http://pfsweb.ifsi.rm.cnr.it/documenti/venere/vexpfsprop.pdf .
  29. S. Hosokawa, T. Matsuoka, K. Tamura, “Optical absorption spectra of liquid sulphur over a wide absorption range,” J. Phys. Cond. Matter 6, 5273–5282 (1994). [CrossRef]
  30. A. T. Young, Department of Astronomy, San Diego State University, San Diego, Calif. (private communication, 2004).
  31. D. J. Segelstein, “The complex index of refraction of water,” M.S. thesis (University of Missouri, Kansas City, 1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited