OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 27 — Sep. 20, 2005
  • pp: 5778–5785

Phase-shifting interferometry by a covariance-based method

Abhijit Patil, Pramod Rastogi, and Benny Raphael  »View Author Affiliations


Applied Optics, Vol. 44, Issue 27, pp. 5778-5785 (2005)
http://dx.doi.org/10.1364/AO.44.005778


View Full Text Article

Enhanced HTML    Acrobat PDF (201 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel generalized approach to phase-shifting interferometry in which phase distribution in an interferogram is evaluated in the presence of nonsinusoidal waveforms and piezoactuator device miscalibration is proposed. The approach is based on the underlying rotational invariance of signal subspaces spanned by two temporally displaced data sets. The advantage of the proposed method lies in its ability to identify arbitrary phase-step values pixelwise from an interference signal buried in noise. The robustness of the proposed method is investigated by addition of white Gaussian noise during the simulations.

© 2005 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

History
Original Manuscript: October 15, 2004
Revised Manuscript: February 24, 2005
Manuscript Accepted: March 21, 2005
Published: September 20, 2005

Citation
Abhijit Patil, Pramod Rastogi, and Benny Raphael, "Phase-shifting interferometry by a covariance-based method," Appl. Opt. 44, 5778-5785 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-27-5778


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Carré, “Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures,” Metrologia 2, 13–23 (1966). [CrossRef]
  2. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974). [CrossRef] [PubMed]
  3. K. Creath, “Phase-shifting holographic interferometry,” in Holographic Interferometry, P. K. Rastogi, ed., Vol. 68 of Springer Series in Optical Sciences (Springer-Verlag, 1994), pp. 109–150. [CrossRef]
  4. T. Kreis, Holographic Interferometry: Principles and Methods (Akademie Verlag, 1996), pp. 101–170.
  5. J. E. Greivenkamp, J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 1992), pp. 501–598.
  6. J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432 (1983). [CrossRef] [PubMed]
  7. Y. Zhu, T. Gemma, “Method for designing error-compensating phase-calculation algorithms for phase-shifting interferometry,” Appl. Opt. 40, 4540–4546 (2001). [CrossRef]
  8. P. Hariharan, B. F. Oreb, T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504–2506 (1987). [CrossRef] [PubMed]
  9. J. Schwider, O. Falkenstorfer, H. Schreiber, A. Zoller, “New compensating four-phase algorithm for phase-shift interferometry,” Opt. Eng. 32, 1883–1885 (1993). [CrossRef]
  10. Y. Surrel, “Phase stepping: a new self-calibrating algorithm,” Appl. Opt. 32, 3598–3600 (1993). [CrossRef] [PubMed]
  11. Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt. 35, 51–60 (1996). [CrossRef] [PubMed]
  12. J. van Wingerden, H. J. Frankena, C. Smorenburg, “Linear approximation for measurement errors in phase shifting interferometry,” Appl. Opt. 30, 2718–2729 (1991). [CrossRef] [PubMed]
  13. K. G. Larkin, B. F. Oreb, “Design and assessment of symmetrical phase-shifting algorithms,” J. Opt. Soc. Am. A 9, 1740–1748 (1992). [CrossRef]
  14. K. Hibino, B. F. Oreb, D. I. Farrant, K. G. Larkin, “Phase shifting for nonsinusoidal waveforms with phase-shift errors,” J. Opt. Soc. Am. A 12, 761–768 (1995). [CrossRef]
  15. Y.-Y. Cheng, J. C. Wyant, “Phase-shifter calibration in phase-shifting interferometry,” Appl. Opt. 24, 3049–3052 (1985). [CrossRef]
  16. B. Zhao, “A statistical method for fringe intensity-correlated error in phase-shifting measurement: the effect of quantization error on the N-bucket algorithm,” Meas. Sci. Technol. 8, 147–153 (1997). [CrossRef]
  17. B. Zhao, Y. Surrel, “Effect of quantization error on the computed phase of phase-shifting measurements,” Appl. Opt. 36, 2070–2075 (1997). [CrossRef] [PubMed]
  18. R. Józwicki, M. Kujawinska, M. Salbut, “New contra old wavefront measurement concepts for interferometric optical testing,” Opt. Eng. 31, 422–433 (1992). [CrossRef]
  19. P. de Groot, “Vibration in phase-shifting interferometry,” J. Opt. Soc. Am. A 12, 354–365 (1995). [CrossRef]
  20. P. de Groot, L. L. Deck, “Numerical simulations of vibration in phase-shifting interferometry,” Appl. Opt. 35, 2172–2178 (1996). [CrossRef] [PubMed]
  21. C. Rathjen, “Statistical properties of phase-shift algorithms,” J. Opt. Soc. Am. A 12, 1997–2008 (1995). [CrossRef]
  22. P. L. Wizinowich, “Phase-shifting interferometry in the presence of vibration: a new algorithm and system,” Appl. Opt. 29, 3271–3279 (1990). [CrossRef] [PubMed]
  23. C. Joenathan, B. M. Khorana, “Phase measurement by differentiating interferometric fringes,” J. Mod. Opt. 39, 2075–2087 (1992). [CrossRef]
  24. K. Kinnnstaetter, A. W. Lohmann, J. Schwider, N. Streibl, “Accuracy of phase shifting interferometry,” Appl. Opt. 27, 5082–5089 (1988). [CrossRef]
  25. C. J. Morgan, “Least squares estimation in phase-measurement interferometry,” Opt. Lett. 7, 368–370 (1982). [CrossRef] [PubMed]
  26. J. E. Greivenkamp, “Generalized data reduction for heterodyne interferometry,” Opt. Eng. 23, 350–352 (1984). [CrossRef]
  27. R. Roy, T. Kailath, “ESPRIT—Estimation of signal parameters via rotational invariance techniques,” IEEE Trans. Acoust. Speech Signal Process. 37, 984–995 (1989). [CrossRef]
  28. J. J. Fuchs, “Estimating the number of sinusoids in additive white noise,” IEEE Trans. Acoust. Speech Signal Process. 36, 1846–1853 (1988). [CrossRef]
  29. T. Söderström, P. Stoica, “Accuracy of high-order Yule–Walker methods for frequency estimation of complex sine waves,” IEE Proc. F 140, 71–80 (1993).
  30. R. Kumaresan, D. W. Tufts, “Estimating the angles of arrival of multiple plane waves,” IEEE Trans. Aerosp. Electron. Syst. 19, 134–139 (1983). [CrossRef]
  31. M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities (Dover, 1992), pp. 15–16.
  32. K. M. Hoffman, R. Kunze, Linear Algebra, 2nd ed. (Prentice-Hall, 1971).
  33. P. K. Rastogi, “Phase shifting applied to four-wave holographic interferometers,” Appl. Opt. 31, 1680–1681 (1992). [CrossRef] [PubMed]
  34. P. K. Rastogi, “Phase-shifting holographic moiré: phase-shifter error-insensitive algorithms for the extraction of the difference and sum of phases in holographic moiré,” Appl. Opt. 32, 3669–3675 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited