OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 28 — Oct. 1, 2005
  • pp: 5947–5955

Fast computation of the Narcissus reflection coefficient for the Herschel far-infrared/submillimeter-wave Cassegrain telescope

Robert L. Lucke, Jacqueline Fischer, Arturo M. Polegre, and Douwe A. Beintema  »View Author Affiliations


Applied Optics, Vol. 44, Issue 28, pp. 5947-5955 (2005)
http://dx.doi.org/10.1364/AO.44.005947


View Full Text Article

Enhanced HTML    Acrobat PDF (158 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Placement of a scatter cone at the center of the secondary of a Cassegrain telescope greatly reduces Narcissus reflection. To calculate the remaining Narcissus reflection, a time-consuming physical optics code such as GRASP8 is often used to model the effects of reflection and diffraction. Fortunately, the Cassegrain geometry is sufficiently simple that a combination of theoretical analysis and Fourier propagation can yield rapid, accurate results at submillimeter wavelengths. We compare these results with those from GRASP8 for the heterodyne instrument for the far-infrared on the Herschel Space Observatory and confirm the effectiveness of the chosen scatter cone design.

© 2005 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(260.0260) Physical optics : Physical optics
(260.3090) Physical optics : Infrared, far

ToC Category:
Physical Optics

History
Original Manuscript: December 14, 2004
Revised Manuscript: April 13, 2005
Manuscript Accepted: April 14, 2005
Published: October 1, 2005

Citation
Robert L. Lucke, Jacqueline Fischer, Arturo M. Polegre, and Douwe A. Beintema, "Fast computation of the Narcissus reflection coefficient for the Herschel far-infrared/submillimeter-wave Cassegrain telescope," Appl. Opt. 44, 5947-5955 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-28-5947


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Th. De Graauw, F. P. Helmich, “Herschel-HIFI: the heterodyne instrument for the far-infrared,” in The Promise of the Herschel Space Observatory, G. L. Pilbratt, J. Cernicharo, A. M. Heras, T. Prusti, R. Harris, eds., SP-460, 45–51 (European Space Agency, 2001).
  2. G. L. Pilbratt, “Herschel Space Observatory mission overview,” in IR Space Telescopes and Instruments, J. C. Mather, ed., Proc. SPIE4850, 586–597 (2003). [CrossRef]
  3. E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, G. L. Pilbratt, “A Φ3.5m SiC telescope for Herschel mission,” in IR Space Telescopes and Instruments, J. C. Mather, ed., Proc. SPIE4850, 606–618 (2003). [CrossRef]
  4. A. Poglitsch, C. Waelkens, N. Geis, “The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory,” in IR Space Telescopes and Instruments, J. C. Mather, ed., Proc. SPIE4850, 662–673 (2003). [CrossRef]
  5. M. J. Griffin, B. M. Swinyard, L. G. Vigroux, “SPIRE—Herschel’s Submillimetre Camera and Spectrometer,” in IR Space Telescopes and Instruments, J. C. Mather, ed., Proc. SPIE4850, 686–697 (2003). [CrossRef]
  6. R. J. Allen, “The radio spectrum of Virgo A from 1411.7 to 1423.8 MHz,” Astron. Astrophys. 3, 316–322 (1969).
  7. D. Morris, “Chromatism in radio telescopes due to blockage and feed scattering,” Astron. Astrophys. 67, 221–228 (1978).
  8. S. Silver, Microwave Antenna Theory and Design (McGraw-Hill, 1949); reprinted by Peter Peregrinus, London, in 1984 as Vol. 19 of the EEE Electromagnetic Waves Series).
  9. R. Padman, R. E. Hills, “VSWR reduction for large millimeter-wave cassegrain radiotelescopes,” Int. J. Infrared Millim. Waves 12, 589–599 (1991). [CrossRef]
  10. G. T. Poulton, S. H. Lim, “Calculation of input-voltage standing-wave ratio for a reflector antenna,” Electron. Lett. 8, 610–611 (1972). [CrossRef]
  11. C. Dragone, D. C. Hogg, “The radiation pattern and impedance of offset and symmetrical near-field Cassegrainian and Gregorian antennas,” IEEE Trans. Antennas Propag. AP-22, 472–475 (1974). [CrossRef]
  12. A. R. Lopez, “The geometrical theory of diffraction applied to antenna pattern and impedance calculations,” IEEE Trans. Antennas Propag. AP-14, 40–45 (1966). [CrossRef]
  13. K. Pontopiddan, ed., Technical Description of GRASP8, (TICRA Engineering Consultants, 2002), ISBN 87-989218-0-0, Sec. 2.3.1.3.
  14. P. F. Goldsmith, Quasioptical Systems; Gaussian Beam Quasioptical Propagation and Applications (Institute of Electrical and Electronics Engineers, 1998).
  15. G. E. Sommargren, H. J. Weaver, “Diffraction of light by an opaque sphere. 1: Description and properties of the diffraction pattern,” Appl. Opt. 29, 4646–4657 (1990). [CrossRef] [PubMed]
  16. J. W. Goodman, Introduction to Fourier Optics (Wiley1968), Secs. 3.7 and 5.1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited