OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 28 — Oct. 1, 2005
  • pp: 5966–5971

Light propagation in a multilayered medium for three-dimensional optical memory

Masaharu Nakano and Yoshimasa Kawata  »View Author Affiliations

Applied Optics, Vol. 44, Issue 28, pp. 5966-5971 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (629 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the optimization of film thicknesses in a multilayered medium to increase readout signal intensity. The multilayered medium consists of a stack of photosensitive and transparent films, arranged alternately. The thicknesses of the photosensitive and transparent films in the multilayered medium were optimized for a reflection confocal system to read out data by analyzing the propagation of light focused into a multilayered medium.

© 2005 Optical Society of America

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(210.0210) Optical data storage : Optical data storage
(230.4170) Optical devices : Multilayers

ToC Category:
Optical Data Storage

Original Manuscript: February 7, 2005
Revised Manuscript: March 25, 2005
Manuscript Accepted: April 7, 2005
Published: October 1, 2005

Masaharu Nakano and Yoshimasa Kawata, "Light propagation in a multilayered medium for three-dimensional optical memory," Appl. Opt. 44, 5966-5971 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989). [CrossRef] [PubMed]
  2. D. A. Parthenopoulos, P. M. Rentzepis, “Two-photon volume information storage in doped polymer systems,” J. Appl. Phys. 68, 5814–5818 (1990). [CrossRef]
  3. A. S. Dvornikov, P. M. Rentzepis, “Novel organic ROM materials for optical 3D memory devices,” Opt. Commun. 136, 1–6 (1997). [CrossRef]
  4. J. H. Strickler, W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780–1782 (1991). [CrossRef] [PubMed]
  5. S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 314–325 (1993). [CrossRef]
  6. Y. Kawata, H. Ishitobi, S. Kawata, “Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory,” Opt. Lett. 23, 756–758 (1998). [CrossRef]
  7. M. Gu, D. Day, “Use of continuous-wave illumination for two-photon three-dimensional optical bit data storage in a photobleaching polymer,” Opt. Lett. 24, 288–300 (1999). [CrossRef]
  8. S. Kawata, Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100, 1777–1788 (2000). [CrossRef]
  9. A. Toriumi, S. Kawata, M. Gu, “Reflection confocal microscope readout system for three-dimensional photochromic optical data storage,” Opt. Lett. 23, 1924–1926 (1998). [CrossRef]
  10. M. Ishikawa, Y. Kawata, C. Egami, O. Sugihara, N. Okamoto, “Reflection-type confocal readout for multilayered optical memory,” Opt. Lett. 23, 1781–1783 (1998). [CrossRef]
  11. M. Nakano, Y. Kawata, “Compact confocal readout system for three-dimensional memories using a laser-feedback semiconductor laser,” Opt. Lett. 28, 1356–1358 (2003). [CrossRef] [PubMed]
  12. M. Nakano, T. Kooriya, T. Kuragaito, C. Egami, Y. Kawata, M. Tsuchimori, O. Watanabe, “Three-dimensional patterned media for ultrahigh-density optical memory,” Appl. Phys. Lett. 82, 176–178 (2004). [CrossRef]
  13. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  14. M. Born, E. Wolf, Principles of Optics (Pergamon, 1980).
  15. T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).
  16. P. Török, T. Wilson, “Rigorous theory for axial resolution in confocal microscopes,” Opt. Commun. 137, 127–135 (1997). [CrossRef]
  17. M. J. Booth, T. Wilson, “Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin,” J. Microsc. 200, 68–74 (2000). [CrossRef] [PubMed]
  18. M. J. Booth, M. A. A. Neil, T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192, 90–98 (1998). [CrossRef]
  19. M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, S. Kawata, “Active aberration correction for the writing of three-dimensional optical memory devices,” Appl. Opt. 41, 1374–1379 (2002). [CrossRef] [PubMed]
  20. T. D. Milster, R. S. Upton, H. Luo, “Objective lens design for multiple-layer optical data storage,” Opt. Eng. 38, 295–301 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited