OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 28 — Oct. 1, 2005
  • pp: 5972–5989

SPIRALE: a multispecies in situ balloonborne instrument with six tunable diode laser spectrometers

Guy Moreau, Claude Robert, Valéry Catoire, Michel Chartier, Claude Camy-Peyret, Nathalie Huret, Michel Pirre, Luc Pomathiod, and Gilles Chalumeau  »View Author Affiliations

Applied Optics, Vol. 44, Issue 28, pp. 5972-5989 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (3499 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The balloonborne SPIRALE (a French acronym for infrared absorption spectroscopy by tunable diode lasers) instrument has been developed for in situ measurements of several tracer and chemically active species in the stratosphere. Laser absorption takes place in an open Herriott multipass cell located under the balloon gondola, with six lead salt diode lasers as light sources. One mirror is located at the extremity of a deployable mast 3.5 m below the gondola, enabling the measurement of very low abundance species throughout a very long absorption path (up to 544 m). Three successful flights have produced concentration measurements of O3, CO, CO2, CH4, N2O, NO2, NO, HNO3, HCl, HOCl, COF2, and H2O2. Fast measurements (every 1.1 s) allow one to obtain a vertical resolution of 5 m for the profiles. A detection limit of a few tens of parts per trillion in volume has been demonstrated. Uncertainties of 3%–5% are estimated for the most abundant species rising to about 30% for the less abundant ones, mainly depending on the laser linewidth and the signal-to-noise ratio.

© 2005 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.4950) Atmospheric and oceanic optics : Ozone
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(230.4040) Optical devices : Mirrors
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers

ToC Category:
Atmospheric and oceanic optics

Original Manuscript: November 2, 2004
Revised Manuscript: March 7, 2005
Manuscript Accepted: March 7, 2005
Published: October 1, 2005

Guy Moreau, Claude Robert, Valéry Catoire, Michel Chartier, Claude Camy-Peyret, Nathalie Huret, Michel Pirre, Luc Pomathiod, and Gilles Chalumeau, "SPIRALE: a multispecies in situ balloonborne instrument with six tunable diode laser spectrometers," Appl. Opt. 44, 5972-5989 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Hastie, M. D. Miller, “Balloon-borne tunable diode laser absorption spectrometer for multispecies trace gas measurements in the stratosphere,” Appl. Opt. 24, 3694–3701 (1985). [CrossRef] [PubMed]
  2. C. R. Webster, R. D. May, “Simultaneous in situ measurements and diurnal variations of NO, NO2, O3, NO2, CH4, H2O, and CO2in the 40- to 26-km region using an open path tunable diode laser spectrometer,” J. Geophys. Res. 92, 11931–11950 (1987). [CrossRef]
  3. C. R. Webster, R. D. May, R. Toumi, J. A. Pyle, “Active nitrogen partitioning and the nighttime formation of N2O5in the stratosphere: Simultaneous in situ measurements of NO, NO2, O3, and N2O using the BLISS diode laser spectrometer,” J. Geophys. Res. 95, 13851–13866 (1990). [CrossRef]
  4. G. Durry, G. Mégie, “Atmospheric CH4and H2O monitoring with near-infrared InGaAs laser diodes by the SDLA, a balloonborne spectrometer for tropospheric and stratospheric in situ measurements,” Appl. Opt. 38, 7342–7354 (1999). [CrossRef]
  5. G. Toci, P. Mazzinghi, M. Vanini, “A diode laser spectrometer for the in situ measurement of the HNO3content of polar stratospheric clouds,” J. Atmos. Oceanic Technol. 16, 1295–1302 (1999). [CrossRef]
  6. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in-situ stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3,” Appl. Opt. 33, 454–472 (1994). [CrossRef] [PubMed]
  7. D. C. Scott, R. L. Herman, C. R. Webster, R. D. May, G. J. Flesch, E. J. Moyer, “Airborne Laser Infrared Absorption Spectrometer (ALIAS II) for in situ atmospheric measurements of N2O, CH4, CO, HCl, and NO2from balloon or remotely piloted aircraft platforms,” Appl. Opt. 38, 4609–4622 (1999). [CrossRef]
  8. F.-J. Lübken, F. Dingler, H. von Lucke, J. Anders, W. J. Riedel, H. Wolf, “MASERATI: a rocketborne tunable diode laser absorption spectrometer,” Appl. Opt. 38, 5338–5349 (1999). [CrossRef]
  9. H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, Vol. 127 of Chemical Analysis, H. W. Sigrist, ed. (Wiley, New York, 1994).
  10. L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, “The HITRAN molecular spectroscopic database: Edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003). [CrossRef]
  11. D. J. Brassington, “Tunable diode laser absorption spectroscopy for the measurement of atmospheric species,” in Spectroscopy in Environmental Science Vol. 24 of Advances in Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, London, 1995).
  12. C. R. Webster, “Brewster plate spoiler: a novel method for reducing the amplitude of fringes that limit tunable-laser absorption sensitivities,” J. Opt. Soc. Am. B 2, 1464–1470 (1985). [CrossRef]
  13. D. Herriott, H. Kogelnik, R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964). [CrossRef]
  14. G. Moreau, C. Robert, “Etude des variations d’un faisceau lumineux dans une cellule à passages multiples,” J. Opt. (Paris) 16, 177–183 (1985). [CrossRef]
  15. D. E. Cooper, R. E. Warren, “Two-tone optical heterodyne spectroscopy with diode lasers: theory of line shapes and experimental results,” J. Opt. Soc. Am. B 4, 470–480 (1987). [CrossRef]
  16. P. R. Bevington, “Least-Squares Fit to an Arbitrary Function,” in Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), Chap. 11.
  17. H. A. Michelsen, G. L. Manney, M. R. Gunson, C. P. Rinsland, R. Zander, “Correlations of stratospheric abundances of CH4and N2O derived from ATMOS measurements,” Geophys. Res. Lett. 25, 2777–2780 (1998). [CrossRef]
  18. R. L. Herman, D. C. Scott, C. R. Webster, R. D. May, E. J. Moyer, R. J. Salawitch, Y. L. Yung, G. C. Toon, B. Sen, J. J. Margitan, K. H. Rosenlof, H. A. Michelsen, J. W. Elkins, “Tropical entrainment time scales inferred from stratospheric N2O and CH4observations,” Geophys. Res. Lett. 25, 2781–2784 (1998). [CrossRef]
  19. C. B. Carlisle, D. E. Cooper, H. Preier, “Quantum noise-limited FM spectroscopy with a lead-salt diode laser,” Appl. Opt. 28, 2567–2575 (1989). [CrossRef] [PubMed]
  20. F. W. Irion, M. R. Gunson, G. C. Toon, A. Y. Chang, A. Eldering, E. Mahieu, G. L. Manney, H. A. Michelsen, E. J. Moyer, M. J. Newchurch, G. B. Osterman, C. P. Rinsland, R. J. Salawitch, B. Sen, Y. L. Yung, R. Zander, “Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment version 3 data retrievals,” Appl. Opt. 41, 6968–6979 (2002). [CrossRef] [PubMed]
  21. E. D. Rivière, M. Pirre, G. Berthet, J. B. Renard, F. G. Taupin, N. Huret, B. Knudsen, “On the interaction between nitrogen and halogen species in the arctic polar vortex during THESEO and THESEO 2000,” J. Geophys. Res. 107, 8311 (2002). [CrossRef]
  22. T. P. Marcy, D. W. Fahey, R. S. Gao, P. J. Popp, E. C. Richard, T. L. Thompson, K. H. Rosenlof, E. A. Ray, R. J. Salawitch, C. S. Atherton, D. J. Bergmann, B. A. Ridley, A. J. Weinheimer, M. Loewenstein, E. M. Weinstock, M. J. Mahoney, “Quantifying stratospheric ozone in the upper troposphere with in situ measurements of HCl,” Science 304, 261–265 (2004). [CrossRef] [PubMed]
  23. H. A. Michelsen, G. L. Manney, M. R. Gunson, R. Zander, “Correlations of stratospheric abundances of NOy, O3, N2O and CH4derived from ATMOS measurements,” J. Geophys. Res. 103, 28347–28359 (1998). [CrossRef]
  24. P. Hoor, H. Fischer, L. Lange, J. Lelieveld, D. Brunner, “Seasonal variations of a mixing layer in the lowermost stratosphere as identified by the CO-O3correlation from in situ measurements,” J. Geophys. Res. 107, 40446 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited