OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 28 — Oct. 1, 2005
  • pp: 6023–6030

Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties

Masaharu Imaki and Takao Kobayashi  »View Author Affiliations

Applied Optics, Vol. 44, Issue 28, pp. 6023-6030 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (397 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An ultraviolet incoherent Doppler lidar that incorporates the high-spectral-resolution (HSR) technique has been developed for measuring the wind field and aerosol optical properties in the troposphere. An injection seeded and tripled Nd:YAG laser at an ultraviolet wavelength of 355 nm was used in the lidar system. The HRS technique can resolve the aerosol Mie backscatter and the molecular Rayleigh backscatter to derive the signal components. By detecting the Mie backscatter, a great increase in the Doppler filter sensitivity was realized compared to the conventional incoherent Doppler lidars that detected the Rayleigh backscatter. The wind velocity distribution in a two-dimensional cross section was measured. By using the HSR technique, multifunction and absolute value measurements were realized for aerosol extinction, and volume backscatter coefficients; the laser beam transmittance, the lidar ratio, and the backscatter ratio are derived from these measurements.

© 2005 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.7250) Instrumentation, measurement, and metrology : Velocimetry
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing

Original Manuscript: August 24, 2004
Revised Manuscript: March 9, 2005
Manuscript Accepted: April 18, 2005
Published: October 1, 2005

Masaharu Imaki and Takao Kobayashi, "Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties," Appl. Opt. 44, 6023-6030 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Baker, G. D. Emmitt, F. Robertson, R. Atlas, J. Molinari, D. Bowdle, J. Paegle, R. H. Hardesty, R. Menzies, T. Krishnamurti, R. Brown, M. J. Post, J. Anderson, A. Lorenc, J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995). [CrossRef]
  2. R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2coherent laser systems,” Proc. IEEE 84, 181–204 (1996). [CrossRef]
  3. F. F. Hall, R. M. Huffaker, R. M. Hardesty, M. Jackson, T. R. Lawrence, M. Post, R. A. Richter, B. F. Weber, “Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar,” Appl. Opt. 23, 2503–2506 (1987). [CrossRef]
  4. M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd: YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989). [CrossRef] [PubMed]
  5. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 μm using Tm,Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991). [CrossRef] [PubMed]
  6. C. Ground, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Atmos. Ocean Technol. 18, 376–393 (2001). [CrossRef]
  7. M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989). [CrossRef]
  8. C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, J. Porteneuve, “Rayleigh–Mie Doppler wind lidar for atmospheric measurements. Instrumental setup, validation, and first climatological results,” Appl. Opt. 38, 2410–2431 (1999). [CrossRef]
  9. Z. S. Liu, D. Wu, J. T. Liu, K. L. Zhang, W. B. Chen, X. Q. Song, J. W. Hair, C. Y. She, “Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,” Appl. Opt. 41, 7079–7086 (2002). [CrossRef] [PubMed]
  10. C. Flesia, C. L. Korb, C. Hirt, “Double-edge molecular measurement of lidar wind profiles at 355 nm,” Opt. Lett. 25, 1466–1468 (2000). [CrossRef]
  11. B. M. Gentry, H. Chen, S. X. Li, “Wind measurements with 355 nm molecular Doppler lidar,” Opt. Lett. 25, 1231–1233 (2000). [CrossRef]
  12. D. Bruneau, A. Garnier, A. Hertzog, J. Porteneuve, “Wind-velocity lidar measurements by use of a Mach-Zehnder interferometer comparison with a Fabry-Perot interferometer,” Appl. Opt. 43, 173–182 (2004). [CrossRef] [PubMed]
  13. C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique: Theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992). [CrossRef] [PubMed]
  14. C. L. Korb, B. M. Gentry, S. X. Li, “Edge technique Doppler lidar wind measurements with high vertical resolution,” Appl. Opt. 36, 5976–5983 (1997). [CrossRef] [PubMed]
  15. R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Krieger, Malabar, Fla., 1992).
  16. M. J. McGill, W. D. Hart, J. A. McKay, J. D. Spinhirne, “Modeling the performance of direct-detection Doppler lidar systems including cloud and solar background variability,” Appl. Opt. 38, 6388–6397 (1999). [CrossRef]
  17. M. Imaki, D. Sun, T. Kobayashi, “Direct-detection Doppler lidar for two dimensional wind field measurements of the troposphere,” in Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singn, T. Itabe, Z. Liu, eds., Proc. SPIE4893, 303–310 (2002). [CrossRef]
  18. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High-spectral-resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983). [CrossRef] [PubMed]
  19. J. T. Trauger, E. W. Eloranta, S. T. Shipley, F. L. Roesler, P. J. Tryon, “High-spectral-resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis,” Appl. Opt. 22, 3725–3732 (1983). [CrossRef]
  20. P. Piironen, E. E. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994). [CrossRef] [PubMed]
  21. C. J. Grund, E. W. Eloranta, “Fiber-optic scrambler reduces the bandpass range dependence of Fabry–Perot etalons used for spectral analysis of lidar backscatter,” Appl. Opt. 30, 2668–2670 (1991). [CrossRef] [PubMed]
  22. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981). [CrossRef] [PubMed]
  23. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985). [CrossRef] [PubMed]
  24. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984). [CrossRef] [PubMed]
  25. L. Elterman, “UV, visible and IR attenuation for altitudes to 50 km, 1968,” (Air Force Cambridge Research Laboratories, 1968).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited