OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 29 — Oct. 10, 2005
  • pp: 6115–6122

Precision compression molding of glass microlenses and microlens arrays—an experimental study

G. C. Firestone and A. Y. Yi  »View Author Affiliations


Applied Optics, Vol. 44, Issue 29, pp. 6115-6122 (2005)
http://dx.doi.org/10.1364/AO.44.006115


View Full Text Article

Enhanced HTML    Acrobat PDF (391 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An innovative manufacturing process utilizing high-temperature compression molding to fabricate aspherical microlenses by using optical glasses, such as BK7, K-PG325, and soda-lime glass, is investigated. In a departure from conventional approaches, a unique hollow contactless mold design is adopted. Polished glass substrates and the mold assembly are heated above the glass transition temperature first, followed by initial forming, then annealing. The forming rate is controlled in real time to ensure mold position accuracy. Mold materials used include tungsten carbides, 316 stainless steel, 715 copper nickel, and aluminum alloys. The geometric control of the microlenses or microlens arrays can be precisely controlled by the forming temperature, forming speed, mold design, and annealing time.

© 2005 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: January 18, 2005
Revised Manuscript: April 5, 2005
Manuscript Accepted: April 21, 2005
Published: October 10, 2005

Citation
G. C. Firestone and A. Y. Yi, "Precision compression molding of glass microlenses and microlens arrays—an experimental study," Appl. Opt. 44, 6115-6122 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-29-6115


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. P. Keyworth, D. J. Corazza, J. N. McMullin, L. Mabbott, “Single-step fabrication of referactive microlens arrays,” Appl. Opt. 36, 2198–2202 (1997). [CrossRef] [PubMed]
  2. S. Mihailov, S. Lazare, “Fabrication of refractive microlens arrays by excimer laser ablation of amorphous teflon,” Appl. Opt. 32, 6211–6218 (1993). [CrossRef] [PubMed]
  3. M. Fritze, M. B. Stern, P. W. Wyatt, “Laser-fabricated glass microlens arrays,” Opt. Lett. 23, 141–143 (1998). [CrossRef]
  4. M. R. Wang, H. Su, “Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication,” Appl. Opt. 37, 7568–7576 (1998). [CrossRef]
  5. Z. D. Popovic, R. A. Sprague, G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988). [CrossRef] [PubMed]
  6. W. X. Yu, X. -C. Yuan, “Fabrication of refractive microlens in hybrid SiO2/TiO2 sol-gel glass by electron beam lithography,” Opt. Express 11, 899–903 (2003). [CrossRef] [PubMed]
  7. A. Schilling, R. Merz, C. Ossmann, H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171–2176 (2000). [CrossRef]
  8. F. Q. Fu, B. K. A. Ngoi, “Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology,” Opt. Eng. 40, 511–516 (2001). [CrossRef]
  9. D. M. Hartmann, O. Kibar, S. C. Esener, “Optimization and theoretical modeling of polymer microlens arrays fabricated with the hydrophobic effect,” Appl. Opt. 40, 2736–2746 (2001). [CrossRef]
  10. S. Ziolkowski, I. Frese, H. Kasprzak, S. Kufner, “Contact-less embossing of microlenses—a parameter study,” Opt. Eng. 42, 1451–1455 (2003). [CrossRef]
  11. H. J. Quenzer, K. Reimer, P. Merz, “Three-dimensional micro-structuring for optical applications,” in Proceedings of the DGG Symposium Processing and Applications of Optical Components, (Verlag der DGG, 2003), pp. 13–22.
  12. A. Jain, A. Y. Yi, “Numerical modeling of viscoelastic stress relaxation during glass lens forming process,” J. Am. Ceram. Soc. 88, 530–535 (2005). [CrossRef]
  13. R. O. Maschmeyer, C. A. Andrysick, T. W. Geyer, H. E. Meissner, C. J. Parker, L. M. Sanford, “Precision molded glass optics,” Appl. Opt. 22, 2413–2415 (1983). [CrossRef] [PubMed]
  14. R. O. Maschmeyer, R. M. Hujar, L. L. Carpenter, B. W. Nicholson, E. F. Vozenilek, “Optical performance of a diffraction-limited molded-glass biaspheric lens,” Appl. Opt. 22, 2413–2415 (1983). [CrossRef] [PubMed]
  15. G. C. Firestone, A. Jain, A. Y. Yi, “A precision laboratory apparatus for high temperature compression molding of glass lenses,” Rev. Sci. Instrum. 76, 63101–63108 (2005). [CrossRef]
  16. A. Y. Yi, A. Jain, “Compression molding of aspherical glass lenses—a combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88, 579–586 (2005). [CrossRef]
  17. A. Jain, G. C. Firestone, A. Y. Yi, “Viscosity measurement by cylindrical compression for numerical modeling of precision lens molding process,” J. Am. Ceram. Soc. 88, 2409–2414 (2005). [CrossRef]
  18. S. Calixto, “Silicone microlenses and interference gratings,” Appl. Opt. 41, 3355–3361 (2002). [CrossRef] [PubMed]
  19. B. P. Keyworth, D. J. Corazza, J. N. McMullin, L. Mabbott, “Single-step fabrication of refractive microlens arrays,” Appl. Opt. 36, 2198–2202 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited