OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 29 — Oct. 10, 2005
  • pp: 6131–6140

Resonant-cavity-enhanced p-i-n photodiode with a broad quantum-efficiency spectrum by use of an anomalous-dispersion mirror

Chyong-Hua Chen, Kevin Tetz, and Yeshaiahu Fainman  »View Author Affiliations

Applied Optics, Vol. 44, Issue 29, pp. 6131-6140 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (299 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A resonant-cavity-enhanced photodiode with broad filter transmittance and high quantum efficiency was numerically designed and analyzed, fabricated, and validated experimentally. We show theoretically that the quantum-efficiency spectrum broadens because of anomalous dispersion of the reflection phase of a mirror in the device and describe conditions that allow maximal flatness of the transmitted spectrum to be achieved. To demonstrate the concepts we design, fabricate, and characterize a backilluminated In0.47Ga0.53As-based p-i-n photodiode upon a InP substrate. Experimental measurements of the fabricated devices demonstrate a peak quantum efficiency of 0.80 at 1550 nm and a FWHM of transmittance of 35.96 nm.

© 2005 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(230.5160) Optical devices : Photodetectors
(230.5170) Optical devices : Photodiodes
(230.5750) Optical devices : Resonators
(310.1620) Thin films : Interference coatings

ToC Category:
Optical Devices

Original Manuscript: March 7, 2005
Revised Manuscript: May 12, 2005
Manuscript Accepted: May 24, 2005
Published: October 10, 2005

Chyong-Hua Chen, Kevin Tetz, and Yeshaiahu Fainman, "Resonant-cavity-enhanced p-i-n photodiode with a broad quantum-efficiency spectrum by use of an anomalous-dispersion mirror," Appl. Opt. 44, 6131-6140 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27, 2025–2034 (1991). [CrossRef]
  2. M. S. Unlu, K. Kishino, H. J. Liaw, H. Morkoc, “A theoretical study of resonant cavity-enhanced photodetectors with Ge and Si active regions,” J. Appl. Phys. 71, 4049–4058 (1992). [CrossRef]
  3. M. S. Unlu, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–39 (1995). [CrossRef]
  4. K. Liu, Y. Huang, X. Ren, “Theory and experiments of a three-cavity wavelength-selective photodetector,” Appl. Opt. 39, 4263–4269 (2000). [CrossRef]
  5. H.-H. Tung, C.-P. Lee, “Design of a resonant-cavity-enhanced photodetector for high-speed applications,” IEEE J. Quantum Electron. 33, 753–60 (1997). [CrossRef]
  6. M. Gokkavas, G. Ulu, O. Dosunmu, R. P. Mirin, M. S. Unlu, “Resonant cavity enhanced photodiodes with a broadened spectral peak,” in 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, 2001), Vol. 2, pp. 768–769.
  7. S. Y. Hu, E. R. Hegblom, L. A. Coldren, “Coupled-cavity resonant photodetectors for high-performance wavelength demultiplexing applications,” Appl. Phys. Lett. 71, 178–180 (1997). [CrossRef]
  8. Y. Zhong, Z. Pan, L. Li, Y. Huang, X. Ren, “Proposition of a nearly rectangular response resonant cavity enhanced (RCE) photodetector,” in Semiconductor Optoelectronic Device Manufacturing and Applications, D. Chen, ed., Proc. SPIE4602, 74–78 (2001). [CrossRef]
  9. F. Y. Huang, A. Salvador, X. Gui, N. Teraguchi, H. Morkoc, “Resonant-cavity GaAs/InGaAs/AlAs photodiodes with a periodic absorber structure,” Appl. Phys. Lett. 63, 141–143 (1993). [CrossRef]
  10. A. Srinivasan, S. Murtaza, J. C. Campbell, B. G. Streetman, “High quantum efficiency dual wavelength resonant-cavity photodetector,” Appl. Phys. Lett. 66, 535–537 (1995). [CrossRef]
  11. B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376–2378 (1998). [CrossRef]
  12. Y. H. Zhang, H. T. Luo, W. Z. Shen, “Study on the quantum efficiency of resonant cavity enhanced GaAs far-infrared detectors,” J. Appl. Phys. 91, 5538–5544 (2002). [CrossRef]
  13. C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, X. Ren, “Back-incident SiGe–Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photon. Technol. J. 12, 1373–1375 (2000). [CrossRef]
  14. A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, 1989), p. 20.
  15. Y. V. Troitski, “Dispersion-free, multiple-beam interferometer,” Appl. Opt. 34, 4717–4722 (1995). [CrossRef] [PubMed]
  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vols. I and III.
  17. W. Kowalsky, J. Mahnss, “Monolithically integrated InGaAlAs dielectric reflectors for vertical cavity optoelectronic devices,” Appl. Phys. Lett. 59, 1011–1012 (1991). [CrossRef]
  18. Y. Y. Troitski, “Dielectric mirrors with the anomalous dispersion of the reflection phase,” Opt. Spectros. 77, 503–506 (1994).
  19. H. A. Macleod, Thin-Film Optical Filters,3rd ed. (Institute of Physics, 2001). [CrossRef]
  20. M. J. Mondry, D. I. Babic, J. E. Bowers, L. A. Coldren, “Refractive-indexes of (Al, Ga, In) As epilayers on InP for optoelectronic applications,” IEEE Photon. Technol. Lett. 4, 627–630 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited