OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 29 — Oct. 10, 2005
  • pp: 6220–6227

Cramer–Rao bound and phase-diversity blind deconvolution performance versus diversity polynomials

Jean J. Dolne and Harold B. Schall  »View Author Affiliations

Applied Optics, Vol. 44, Issue 29, pp. 6220-6227 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1018 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Information theoretic bounds on the estimated Zernike coefficients for various diversity phase functions are presented. We show that, in certain cases, defocus diversity may yield a higher Cramer–Rao lower bound (CRLB) than some other diversity phase functions. Using simulated images to evaluate the performance of the phase-diversity algorithm, we find that, for an extended scene and defocus diversity, the phase-diversity algorithm achieves the CRLB for known objects. Furthermore, the phase-diversity algorithm achieves the CRLB by a factor of ~2 for unknown objects.

© 2005 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(100.0100) Image processing : Image processing
(100.1830) Image processing : Deconvolution
(100.3010) Image processing : Image reconstruction techniques
(100.3020) Image processing : Image reconstruction-restoration
(110.0110) Imaging systems : Imaging systems

ToC Category:
Image Processing

Original Manuscript: November 15, 2004
Revised Manuscript: March 28, 2005
Manuscript Accepted: April 27, 2005
Published: October 10, 2005

Jean J. Dolne and Harold B. Schall, "Cramer–Rao bound and phase-diversity blind deconvolution performance versus diversity polynomials," Appl. Opt. 44, 6220-6227 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Lucke, “Fundamentals of wide-field sparse-aperture imaging,” IEEE Aerospace Conf. Proc. 3, 3/1401–3/1419 (2001).
  2. R. D. Fiete, T. A. Tantalo, J. R. Calus, J. A. Mooney, “Image quality of sparse-aperture designs for remote sensing,” Opt. Eng. 41, 1957–1969 (2002). [CrossRef]
  3. J. R. Fienup, “MTF and integration time versus fill factor for sparse-aperture imaging systems,” in Imaging Technology and Telescopes, J. W. Bilbro, J. B. Breckinridge, R. A. Carreras, S. R. Czyzak, M. J. Eckart, R. D. Fiete, P. S. Idell, eds., Proc. SPIE4091, 43–47 (2000). [CrossRef]
  4. A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analyzing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).
  5. R. R. Parenti, R. J. Sasiela, “Laser-guide-star systems for astronomical applications,” J. Opt. Soc. Am. A 11, 288–309 (1994). [CrossRef]
  6. M. C. Roggemann, B. Welsh, Imaging through Turbulence, (CRC Press, 1996).
  7. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21, 829–832 (1982). [CrossRef]
  8. R. G. Paxman, J. R. Fienup, “Optical misalignment sensing and image reconstruction using phase diversity,” J. Opt. Soc. Am. A 5, 914–923 (1988). [CrossRef]
  9. R. G. Paxman, T. J. Schultz, J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. A 9, 1072–1085 (1992). [CrossRef]
  10. J. J. Dolne, R. T. Tansey, K. A. Black, J. H. Deville, P. R. Cunningham, K. C. Widen, P. S. Idell, “Practical issues in wave-front sensing by use of phase diversity,” Appl. Opt. 42, 5284–5289 (2003). [CrossRef] [PubMed]
  11. L. Meynadier, V. Michau, M. T. Velluet, J. M. Conan, L. M. Mugnier, G. Rousset, “Noise propagation in wave-front sensing with phase diversity,” Appl. Opt. 38, 4967–4979 (1999). [CrossRef]
  12. D. J. Lee, M. C. Roggemann, B. M. Welsh, “Cramer–Rao analysis of phase-diverse wave-front sensing,” J. Opt. Soc. A 16, 1005–1015 (1999). [CrossRef]
  13. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall, 1993).
  14. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, 1991).
  15. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  16. R. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  17. J. J. Dolne, D. Gerwe, M. M. Johnson, “Performance of three reconstruction methods on blurred and noisy images of extended scenes,” in Digital Image Recovery and Synthesis IV, T. J. Schulz, P. S. Idell, eds., Proc. SPIE3815, 164–175 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited