OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 29 — Oct. 10, 2005
  • pp: 6228–6234

Phase retrieval from diffraction intensities by use of a scanning slit aperture

Nobuharu Nakajima  »View Author Affiliations


Applied Optics, Vol. 44, Issue 29, pp. 6228-6234 (2005)
http://dx.doi.org/10.1364/AO.44.006228


View Full Text Article

Enhanced HTML    Acrobat PDF (257 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A noniterative method of retrieving the phase of a wave field from intensities measured during scanning of a slit aperture is proposed. In the measurements, one records the diffraction intensities of wave fields transmitted through a slit that is scanned along two directions in the Fresnel-zone plane of an object’s field. From these intensities, the phase in the Fresnel-zone plane can be retrieved by a method in which a novel phase calculation technique that uses Fourier transforms is included. Because the method does not require lens systems, it provides a potentially useful means for coherent imaging by use of x rays, electrons, or nuclear particles.

© 2005 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(100.5070) Image processing : Phase retrieval

ToC Category:
Image Processing

History
Original Manuscript: March 17, 2005
Revised Manuscript: May 17, 2005
Manuscript Accepted: May 18, 2005
Published: October 10, 2005

Citation
Nobuharu Nakajima, "Phase retrieval from diffraction intensities by use of a scanning slit aperture," Appl. Opt. 44, 6228-6234 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-29-6228


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. A. Nugent, D. Paganin, T. E. Gureyev, “A phase odyssey,” Phys. Today 54(8), 27–32 (2001). [CrossRef]
  2. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef] [PubMed]
  3. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).
  4. J. Miao, P. Charalambous, J. Kirz, D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometer-sized non-crystalline specimens,” Nature 400, 342–344 (1999). [CrossRef]
  5. J. Miao, T. Ishikawa, B. Johnson, E. H. Anderson, B. Lai, K. O. Hodgson, “High resolution 3D x-ray diffraction microscopy,” Phys. Rev. Lett. 89, 088303 (2002). [CrossRef] [PubMed]
  6. S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstrall, J. C. H. Spence, “X-ray image reconstruction from a diffraction pattern alone,” Phys. Rev. B 68, 140101(R) (2003). [CrossRef]
  7. J. M. Zuo, I. Vartanyants, M. Gao, R. Zhang, L. A. Nagahara, “Atomic resolution imaging of a carbon nanotube from diffraction intensities,” Science 300, 1419–1421 (2003). [CrossRef] [PubMed]
  8. J. Miao, K. O. Hodgson, D. Sayre, “An approach to three-dimensional structures of biomolecules by using single-molecule diffraction images,” Proc. Natl. Acad. Sci. USA 98, 6641–6645 (2001).
  9. J. Miao, T. Ohsuna, O. Terasaki, K. O. Hodgson, M. A. O’Keefe, “Atomic resolution three-dimensional electron diffraction microscopy,” Phys. Rev. Lett. 89, 155502 (2002). [CrossRef] [PubMed]
  10. H. M. L. Faulkner, J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004). [CrossRef] [PubMed]
  11. M. R. Teague, “Irradiance moments: their propagation and use for unique retrieval of phase,” J. Opt. Soc. Am. 72, 1199–1209 (1982). [CrossRef]
  12. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983). [CrossRef]
  13. T. E. Gureyev, A. Roberts, K. A. Nugent, “Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials,” J. Opt. Soc. Am. A 12, 1932–1941 (1995). [CrossRef]
  14. T. E. Gureyev, K. A. Nugent, “Phase retrieval with the transport-of-intensity equation. II. Orthogonal series solution for nonuniform illumination,” J. Opt. Soc. Am. A 13, 1670–1682 (1996). [CrossRef]
  15. N. Nakajima, “Phase-retrieval system using a shifted Gaussian filter,” J. Opt. Soc. Am. A 15, 402–406 (1998). [CrossRef]
  16. N. Nakajima, “Phase retrieval from Fresnel zone intensity measurements by use of Gaussian filtering,” Appl. Opt. 37, 6219–6226 (1998). [CrossRef]
  17. R. E. Burge, M. A. Fiddy, A. H. Greenaway, G. Ross, “The phase problem,” Proc. R. Soc. London Ser. A 350, 191–212 (1976). [CrossRef]
  18. N. Nakajima, “Phase retrieval using the properties of entire functions,” in Advances in Imaging and Electron Physics, P. W. Hawkes, ed. (Academic, 1995), Vol. 93, pp. 109–171. [CrossRef]
  19. S. Bajt, A. Barty, K. A. Nugent, M. MaCartney, M. Wall, D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000). [CrossRef] [PubMed]
  20. K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, Z. Barnea, “Quantitative phase imaging using hard x rays,” Phys. Rev. Lett. 77, 2961–2964 (1996). [CrossRef] [PubMed]
  21. N. Nakajima, M. Watanabe, “Phase retrieval from experimental far-field intensities by use of a Gaussian beam,” Appl. Opt. 41, 4133–4139 (2002). [CrossRef] [PubMed]
  22. N. Nakajima, “Lensless imaging from diffraction intensity measurements by use of a noniterative phase-retrieval method,” Appl. Opt. 43, 1710–1718 (2004). [CrossRef] [PubMed]
  23. J. F. Nye, M. V. Berry, “Dislocation in wave trains,” Proc. R. Soc. London Ser. A 336, 165–190 (1974). [CrossRef]
  24. L. J. Allen, M. P. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199, 65–75 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited