OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 29 — Oct. 10, 2005
  • pp: 6240–6252

Performance-based adaptive power optimization for digital optical interconnects

Xiaoqing Wang, Fouad Kiamilev, George C. Papen, Jeremy Ekman, Ping Gui, Michael J. McFadden, Joseph C. Deroba, Michael W. Haney, and Charles Kuznia  »View Author Affiliations

Applied Optics, Vol. 44, Issue 29, pp. 6240-6252 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (829 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical links are traditionally set to transmit maximum power for worst-case loss and consequently to dissipate more power than is required. We describe a technique to minimize power consumption based on the measured bit-error rate (BER) of the link. This technique uses a novel power-negotiation algorithm that optimizes the link power setting to achieve minimum power dissipation for a target BER. A 0.5 μm complementary metal-oxide semiconductor optical transceiver chip was fabricated, and a free-space optical interconnect system was built for validation. The results showed that the algorithm was able to find the optimum power settings for the VCSELs for a target BER and to account for dynamic changes such as variation in the optical loss in the system.

© 2005 Optical Society of America

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

ToC Category:

Original Manuscript: October 7, 2004
Revised Manuscript: March 22, 2005
Manuscript Accepted: June 14, 2005
Published: October 10, 2005

Xiaoqing Wang, Fouad Kiamilev, George C. Papen, Jeremy Ekman, Ping Gui, Michael J. McFadden, Joseph C. Deroba, Michael W. Haney, and Charles Kuznia, "Performance-based adaptive power optimization for digital optical interconnects," Appl. Opt. 44, 6240-6252 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991). [CrossRef]
  2. M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. H. Brenner, “Multichip free-space optical interconnection demonstration based on integrated arrays of vertical cavity surface emitting lasers and photodetectors,” Appl. Opt. 38, 6190–6200 (1999). [CrossRef]
  3. A. Shang, F. Tooley, “Digital optical interconnects for networks and computing systems,” J. Lightwave Technol. 18, 2086–2094 (2000). [CrossRef]
  4. D. V. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Chateauneuf, A. G. Kirk, J. S. Ahearn, “256-channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS,” J. Lightwave Technol. 19, 1093–1103 (2001). [CrossRef]
  5. M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, F. Kiamilev, “Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,” Proc. IEEE 88, 819–828 (2000). [CrossRef]
  6. D. M. Cutrer, K. Y. Lau, “Ultralow power optical interconnect with zero-biased, ultralow threshold laser—how low a threshold is low enough?” IEEE Photon. Technol. Lett. 7, 4–6 (1995). [CrossRef]
  7. L. Zei, K. Petermann, R. Jager, K. J. Ebeling, “Operation range of VCSEL-interconnect links with ‘below-threshold’ biasing,” J. Lightwave Technol. 18, 477–481 (2000). [CrossRef]
  8. O. Kibar, D. A. Van Blerkom, C. Fan, S. C. Esener, “Power minimization and technology comparisons for digital free-space optoelectronic interconnections,” J. Lightwave Technol. 17, 546–645 (1999). [CrossRef]
  9. J. M. Steininger, E. J. Swanson, “A 500 Mb/s CMOS optical data link receiver integrated circuit,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers (Institute of Electrical and Electronics Engineers, 1986), pp. 60–61, 304.
  10. R. G. Swartz, B. A. Wooley, A. M. Voshchenkov, V. D. Archer, G. M. Chin, “A monolithic laser driver for optical communications,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers (Institute of Electrical and Electronics Engineers, 1982), pp. 162–163.
  11. G. Held, Data over Wireless Networks: Bluetooth, WAP, and Wireless LANS (McGraw-Hill, 2001), Chap. 6.
  12. P. Palacharla, J. Chrostowski, R. Neumann, R. J. Gallenberger, “Techniques for accelerated measurement of low bit error rates in computer data links,” in Proceedings of IEEE 14th Annual International Phoenix Conference on Computers and Communications (Institute of Electrical and Electronics Engineers, 1995), pp. 184–190. [CrossRef]
  13. X. Wang, F. Kiamilev, P. Gui, J. Ekman, G. C. Papen, M. J. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s optical transceiver with accelerated bit-error-ratio test capability,” J. Lightwave Technol. 22, 546–645 (2004). [CrossRef]
  14. V. Tarokh, H. Jafarkhani, A. R. Calderbank, “Space–time block coding for wireless communications: performance results,” IEEE J. Sel. Areas Commun. 17, 451–460 (1999). [CrossRef]
  15. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002), pp. 155–164.
  16. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972), p. 299.
  17. Honeywell International, “Modulating VCSELs,” Honeywell application notes, http://content.honeywell.com/vcsel/publications/app.stm .
  18. K. Obermann, S. Kindt, K. Petermann, “Turn-on jitter in zero-biased single-mode semiconductor lasers,” IEEE Photon. Technol. Lett. 8, 31–33 (1996). [CrossRef]
  19. M. Bruensteiner, G. C. Papen, “Extraction of VCSEL rate-equation parameters for low-bias system simulation,” IEEE J. Sel. Top. Quantum Electron. 5, 487–494 (1999). [CrossRef]
  20. L. P. Chen, K. Y. Lau, “Regime where zero-bias is the low-power solution for digitally modulated laser diodes,” IEEE Photon. Technol. Lett. 8, 185–187 (1996). [CrossRef]
  21. N. K. Dutta, “Power penalty due to timing jitter for laser modulated without prebias,” Appl. Phys. Lett. 67, 3230–3232 (1995). [CrossRef]
  22. Peregrine Semiconductor Corporation, “UTSi CMOS SOS for mixed signal ICs,” Peregrine Semiconductor Corp. Tech. Doc., http://www.peregrine-semi.com/prd_prodinfo.html .
  23. A. Hastings, The Art of Analog Layout (Prentice-Hall, 2001).
  24. Broadcom Corporation, “8-Channel multirate 1.0–3.2-GBPS transceiver,” Product brief, BCM8020, Broadcom Corporation, Irvine, Calif.
  25. Emcore Corporation, “PIN array die 1 × 4 3.125 Gb, S8485-1405” and “Oxide Array Die, 1 × 4 3.125 Gb (U-lot), 8685-1402,”Emcore data sheets (Emcore Corporation, Somerset, N.J.).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited