OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 29 — Oct. 10, 2005
  • pp: 6274–6284

Comparison of the University of California at Los Angeles Line-by-Line Equivalent Radiative Transfer Model and the Moderate-Resolution Transmission Model for accuracy assessment of the National Polar-Orbiting Operational Environmental Satellite System’s Visible–Infrared Imager–Radiometer Suite cloud algorithms

S. C. Ou, K. N. Liou, Y. Takano, E. Wong, K. Hutchison, and T. Samec  »View Author Affiliations


Applied Optics, Vol. 44, Issue 29, pp. 6274-6284 (2005)
http://dx.doi.org/10.1364/AO.44.006274


View Full Text Article

Enhanced HTML    Acrobat PDF (865 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To support the verification and implementation of the National Polar-Orbiting Operational Environmental Satellite System’s Visible–Infrared Imaging–Radiometric Suite (VIIRS) algorithms used for inferring cloud environmental data records, an intercomparison effort has been carried out to assess the consistency between the simulated cloudy radiances–reflectances from the University of California at Los Angeles Line-by-Line Equivalent Radiative Transfer Model and those from the Moderate-Resolution Transmission Model (MODTRAN) with the 16 stream Discrete Ordinate Radiative Transfer Model (DISORT) incorporated. For typical ice and water cloud optical depths and particle sizes, we found discrepancies in the visible and near-infrared reflectances from the two models, which presumably are due to the difference in phase function (nonspherical versus Henyey–Greenstein), different numbers of phase function expansion terms (16 versus 200 terms), and different treatment of forward peak truncation in each model. Using the MODTRAN4, we also found substantial differences in the infrared radiances for optically thick clouds. These differences led to the discovery by MODTRAN4 developers of an inconsistency in the MODTRAN4–DISORT interface. MODTRAN4 developers corrected the inconsistency, which provided dramatic reductions in the differences between the two radiative transfer models. The comparison not only affects the prospective test plan for the VIIRS cloud algorithms but also should lead to improvements in future MODTRAN releases.

© 2005 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.1090) Scattering : Aerosol and cloud effects

ToC Category:
Remote Sensing

History
Original Manuscript: December 13, 2004
Revised Manuscript: April 8, 2005
Manuscript Accepted: April 11, 2005
Published: October 10, 2005

Citation
S. C. Ou, K. N. Liou, Y. Takano, E. Wong, K. Hutchison, and T. Samec, "Comparison of the University of California at Los Angeles Line-by-Line Equivalent Radiative Transfer Model and the Moderate-Resolution Transmission Model for accuracy assessment of the National Polar-Orbiting Operational Environmental Satellite System’s Visible–Infrared Imager–Radiometer Suite cloud algorithms," Appl. Opt. 44, 6274-6284 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-29-6274


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Welsh, H. Swenson, S. A. Cota, F. DeLuccia, J. M. Haas, C. F. Schueler, R. M. Durham, J. E. Clement, P. E. Ardanuy, “VIIRS (Visible Infrared Imager Radiometer Suite): a next-generation operational environmental sensor for NPOESS,” presented at the International Geoscience and Remote Sensing Symposium (IGARSS), Sydney, Australia, 8–14 July 2001.
  2. S. C. Ou, Y. Takano, K. N. Liou, G. J. Higgins, A. George, R. Slonaker, “Remote sensing of cirrus cloud optical thickness and effective size for the National Polar-orbiting Operational Environmental Satellite System Visible–Infrared Imager Radiometer Suite: sensitivity to instrument noise and uncertainties in environmental parameters,” Appl. Opt. 42, 7202–72142003. [CrossRef]
  3. Associate Directorate for Acquisition NPOESS Integrated Program Office, “Visible/Infrared Imager/Radiometer Suite (VIIRS) Sensor Requirements Document (SRD) for National Polar-Orbiting Operational Environmental Satellite System (NPOESS) Spacecraft and Sensors,” Version-2, Rev. a (NPOESS Integrated Program Office, Silver Spring, Md., 2000).
  4. K. Stamnes, S.-C. Tsay, W. J. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988). [CrossRef] [PubMed]
  5. K. Stamnes, S.-C. Tsay, W. J. Wiscombe, I. Laszlo, “DISTORT, a general purpose FORTRAN program for discrete-ordinate-method radiative transfer in scattering and emitting layered media: documentation of methodology,” Rep. available from ftp://climatel.gsfc.nasa.gov/wiscombe/ (2000).
  6. Y. Takano, K. N. Liou, “Radiative transfer in cirrus clouds. I. Single-scattering and optical properties of hexagonal ice crystals; II. Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci. 46, 3–36 (1989). [CrossRef]
  7. L. S. Rothman31 additional authors, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstations): 1996 Ed.,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  8. L. S. Rothman31 additional authors, “THE HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant Spectrosc. Radiat. Transfer 82, 5–44 (2003). [CrossRef]
  9. M. P. Thekaekara, “Solar irradiance: total and spectral and its possible variation,” Appl. Opt. 15, 915–920 (1976). [CrossRef] [PubMed]
  10. F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chettwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “User guide to LOWTRAN 7” (U.S. Air Force Geophysics Laboratory, 1988).
  11. G. P. Anderson, R. H. Picard, J. H. Chetwynd, “Proceedings of the 17th Annual Review Conference on Atmospheric Transmission Models,” (Phillips Laboratory/Geophysics Directorate, Hanscom Air Force Base, 1995).
  12. Q. Fu, K. N. Liou, “On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres,” J. Atmos. Sci. 49, 2139–2156 (1992). [CrossRef]
  13. K. N. Liou, An Introduction to Atmospheric Radiation, 2nd ed., Vol. 84 of Academic International Geophysics Series (Academic, 2002).
  14. G. A. d’Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols, Global Climatology and Radiative Characteristics (Deepak Publishing, 1991).
  15. Y. Takano, K. N. Liou, “Transfer of polarized infrared radiation in optically anisotropic media: application to horizontally oriented ice crystals,” J. Opt. Soc. Am. A 10, 1243–1256 (1993). [CrossRef]
  16. S. C. Ou, K. N. Liou, Y. Takano, G. J. Higgins, A. George, R. Slonaker, “VIIRS cloud effective particle size and cloud optical depth algorithm theoretical basis document,” Algorithm Theoretical Basis Document, Version 5, Rev. 1 (Raytheon, Lanham, Md., 2002).
  17. Y. Takano, K. N. Liou, “Radiative transfer in cirrus clouds. III. Light scattering by irregular ice crystals,” J. Atmos. Sci. 52, 818–837 (1995). [CrossRef]
  18. Y. Takano, K. N. Liou, P. Minnis, “Effects of small ice crystals on cirrus infrared radiative properties,” J. Atmos. Sci. 49, 1487–1493 (1992). [CrossRef]
  19. K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994). [CrossRef]
  20. S. Chandrasekhar, Radiative Transfer (Oxford U. Press, 1950).
  21. A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: A Moderate Resolution Model for LOWTRAN7,” (U.S. Air Force Geophysics Laboratory, 1989), pp. 1–38.
  22. V. Grano, T. Scalione, P. Emch, H. Agraveante, B. Hauss, J. Jackson, S. Mills, T. Samec, M. Shoucri, “End-to-end performance assessment of the National Polar-orbiting Operational Environmental Satellite System environmental data records,” in Weather and Environmental Satellites, T. H. Vonder Haar, H.- L. Huang, eds., Proc. SPIE5549, 53–59 (2004). [CrossRef]
  23. W. Wiscombe, “The delta-M method: rapid yet accurate radiative flux calculations for strongly asymmetric phase functions,” J. Atmos. Sci. 34, 1408–1422 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited