OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 29 — Oct. 10, 2005
  • pp: 6285–6295

Preparation and optical scattering characterization of gold nanorods and their application to a dot-immunogold assay

Anna V. Alekseeva, Vladimir A. Bogatyrev, Lev A. Dykman, Boris N. Khlebtsov, Lyubov A. Trachuk, Andrei G. Melnikov, and Nikolai G. Khlebtsov  »View Author Affiliations


Applied Optics, Vol. 44, Issue 29, pp. 6285-6295 (2005)
http://dx.doi.org/10.1364/AO.44.006285


View Full Text Article

Enhanced HTML    Acrobat PDF (847 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe optical monitoring of the synthesis of gold nanorods (NRs) based on seed-mediated growth in the presence of the soft surfactant template cetyltrimethyilammonium bromide. To separate NRs from spheres and surfactants we fractionated samples in the density gradient of glycerol. The optical properties of NRs were characterized by extinction and differential light-scattering spectra (at 90°, 450–800 nm) and by the depolarization light-scattering ratio, Ivh/Ivv, measured at 90° with a helium–neon laser. Theoretical spectra and the Ivh/Ivv ratios were calculated by the T-matrix method as applied to randomly oriented NRs, which were modeled by right-circular cylinders with semispherical ends. The simulated data were fitted to experimental observations by use of particle length and width as adjustable parameters, which were close to the data yielded by transmission electron microscopy. The sensitivity of the long-wavelength resonance of NRs to the dielectric surroundings was examined both experimentally and theoretically by comparison of the extinction spectra of NRs in water and in a 25% glycerol solution. Finally, we discuss the application of NR–protein A conjugates to a dot-immunogold assay with the example of biospecific staining of human IgG molecules adsorbed onto small membrane spots.

© 2005 Optical Society of America

OCIS Codes
(260.3910) Physical optics : Metal optics
(290.0290) Scattering : Scattering
(290.5820) Scattering : Scattering measurements
(290.5850) Scattering : Scattering, particles

ToC Category:
Scattering

History
Original Manuscript: April 8, 2005
Manuscript Accepted: April 14, 2005
Published: October 10, 2005

Citation
Anna V. Alekseeva, Vladimir A. Bogatyrev, Lev A. Dykman, Boris N. Khlebtsov, Lyubov A. Trachuk, Andrei G. Melnikov, and Nikolai G. Khlebtsov, "Preparation and optical scattering characterization of gold nanorods and their application to a dot-immunogold assay," Appl. Opt. 44, 6285-6295 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-29-6285


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Niemeyer, C. A. Mirkin, eds., Nanobiotechnology: Concepts, Applications, and Perspectives (Wiley-VCH, 2004). [CrossRef]
  2. W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003). [CrossRef]
  3. J. Yguerabide, E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. II. Experimental characterization,” Anal. Biochem. 262, 157–176 (1998). [CrossRef] [PubMed]
  4. J. J. Mock, D. R. Smith, S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3, 485–491 (2003). [CrossRef]
  5. A. J. Haes, S. Zou, G. C. Schatz, R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 109–116 (2004). [CrossRef]
  6. A. J. Haes, S. Zou, G. C. Schatz, R. P. Van Duyne, “A nanoscale optical biosensor: the short range distance dependence of the localized surface plasmon resonance of silver and gold nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004). [CrossRef]
  7. I. D. Walton, S. M. Norton, A. Balasingham, L. He, D. F. Oviso, D. Gupta, P. A. Raju, M. J. Natan, R. G. Freeman, “Particles for multiplexed analysis in solution: detection and identification of striped metallic particles using optical microscopy,” Anal. Chem. 74, 2240–2247 (2002). [CrossRef] [PubMed]
  8. A. J. Haes, R. P. van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10,596–10,604 (2002). [CrossRef]
  9. D. A. Schultz, “Plasmon resonant particles for biological detection,” Curr. Opin. Biotechnol. 14, 13–22 (2003). [CrossRef] [PubMed]
  10. A. D. McFarland, R. P. van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003). [CrossRef]
  11. G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003). [CrossRef]
  12. M. B. Mohamed, V. Volkov, S. Link, M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517–523 (2000). [CrossRef]
  13. S. Link, M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54, 331–346 (2003). [CrossRef] [PubMed]
  14. N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, “Optical properties and biomedical applications of nanostructures based on gold and silver bioconjugates,” in Photopolarimetry in Remote Sensing, G. Videen, Ya. S. Yatskiv, M. I. Mishchenko, eds. (Kluwer Academic, 2004), pp. 265–308.
  15. S. Link, M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999). [CrossRef]
  16. V. A. Bogatyrev, B. A. Medvedev, L. A. Dykman, N. G. Khlebtsov, “Light scattering spectra of colloidal gold aggregates: experimental measurements and theoretical simulations,” in Optical Technologies in Biophysics and Medicine II, V. V. Tuchin, ed., Proc. SPIE4241, 42–48 (2001).
  17. V. A. Bogatyrev, L. A. Dykman, Ya. M. Krasnov, V. K. Plotnikov, N. G. Khlebtsov, “Differential light spectroscopy for studying biospecific assembling of gold nanoparticles with protein or oligonucleotide probes,” Colloid J. 64, 671–680 (2002). [CrossRef]
  18. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, Ya. M. Krasnov, “Differential light scattering spectroscopy: a new approach to studies of colloidal gold nanosensors,” J. Quant. Spectrosc. Radiat. Transfer 89, 133–142 (2004). [CrossRef]
  19. V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, N. G. Khlebtsov, “Measurement of mean size and evaluation of polydispersity of gold nanoparticles from spectra of optical absorption and scattering,” Opt. Spectrosc. 94, 161–169 (2004).
  20. Z. Jiang, Z. Feng, T. Li, F. Li, F. Zhong, J. Xie, X. Yi, “Resonance scattering spectroscopy of gold nanoparticle,” Sci. China Ser. B Chem. 44, 175–181 (2001). [CrossRef]
  21. D. Roll, J. Malicka, I. Gryczynski, Z. Gryczynski, J. R. Lakowicz, “Metallic colloid wavelength-ratiometric scattering sensors,” Anal. Chem. 75, 3440–3445 (2003).
  22. X. Liu, H. Yuan, D. Pang, R. Cai, “Resonance light scattering spectroscopy study of interaction between gold colloid and thiamazole and its analytical application,” Spectrochim. Acta Part A 60, 385–389 (2004). [CrossRef]
  23. J.-Y. Chang, H. Wu, H. Chen, Y.-C. Ling, W. Tan, “Oriented assembly of Au nanorods using biorecognition system,” Chem. Commun. 8, 1092–1094 (2005). [CrossRef]
  24. C. Sönnichsen, A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301–304 (2005). [CrossRef] [PubMed]
  25. L. A. Bauer, N. S. Birenbaum, G. J. Meyer, “Biological applications of high aspect ratio nanoparticles,” Mater. Chem. 14, 517–526 (2004). [CrossRef]
  26. W. Chen, W. Cai, L. Zhang, G. Wang, L. Zhang, “Sono-chemical processes and formation of gold nanoparticles within pores of mesoporous silica,” J. Colloid Interface Sci. 238, 291–295 (2001). [CrossRef] [PubMed]
  27. B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, C. Schönenberger, “Colloidal dispersion of gold rods: synthesis and optical properties,” Langmuir 16, 451–458 (2000). [CrossRef]
  28. A. I. Rusanov, Micellization in Surfactant Solutions (Gordon & Breach, 1999).
  29. N. R. Jana, L. Gearheart, C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. 105, 4065–4067 (2001).
  30. B. Nikoobakht, M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003). [CrossRef]
  31. M.-Ch. Daniel, D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004). [CrossRef] [PubMed]
  32. N. R. Jana, L. Gearheart, C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rodlike gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389–1393 (2001). [CrossRef]
  33. S. K. Kang, S. Chah, Ch. Y. Yun, J. Yi, “Aspect ratio controlled synthesis of gold nanorods,” Korean J. Chem. Eng. 20, 1145–1148 (2003). [CrossRef]
  34. F. Kim, J. H. Song, P. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124, 14,316–14,317 (2002). [CrossRef]
  35. S. Hsieh, S. Meltzer, C. R. C. Wang, A. A. G. Requicha, M. E. Thompson, B. E. Koel, “Imaging and manipulation of gold nanorods with an atomic force microscope,” J. Phys. Chem. B 106, 231–234 (2002). [CrossRef]
  36. F. Chen, G. Q. Xu, T. S. A. Hor, “Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion,” Mater. Lett. 4325, 1–5 (2003).
  37. Sh. O. Obare, N. R. Jana, C. J. Murphy, “Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes,” Nano Lett. 1, 601–603 (2001). [CrossRef]
  38. R. Gans, “Über die Form ultramikroskopischer Goldteilchen,” Ann. Phys. 37, 881–900 (1912). [CrossRef]
  39. S. Link, M. B. Mohamed, M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constants,” J. Phys. Chem. B 103, 3073–3077 (1999). [CrossRef]
  40. N. G. Khlebtsov, L. A. Trachuk, A. G. Melnikov, “A new spectral resonance of metal nanorods,” Opt. Spectrosc. 97, 105–107 (2004). [CrossRef]
  41. N. Jana, L. Gearheart, Sh. Obare, C. Murphy, “Anisotropic chemical reactivity of gold spheroids and nanorods,” Langmuir 18, 922–927 (2002). [CrossRef]
  42. J. De Mey, M. Moeremans, “The preparation of colloidal gold probes and their use as markers in electron microscopy,” in Advanced Techniques in Biological Electron Microscopy, J. K. Koehler, ed. (Springer-Verlag, 1986), Vol. 3, pp. 229–271. [CrossRef]
  43. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Optical properties of colloidal gold and its biospecific conjugates,” Colloid J. 57, 384–395 (1995).
  44. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Optical properties of colloidal gold and its biospecific conjugates. Errata,” Colloid J. 58, 114 (1996).
  45. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Spectral extinction of colloidal gold and its biospecific conjugates,” J. Colloid Interface Sci. 180, 436–445 (1996). [CrossRef]
  46. V. A. Bogatyrev, L. A. Dykman, “Colloidal gold in solid-phase assays,” Biochemistry (Mos.) 62, 350–356 (1997).
  47. B. N. Khlebtsov, N. G. Khlebtsov, S. Yu. Shchyogolev, “Studies of liposomes by quasielastic light scattering and spectroturbidimetry,” in Optical Technologies in Biophysics and Medicine III, V. V. Tuchin, ed., Proc. SPIE4707, 261–265 (2002).
  48. URL: http://www.photocor.com ; http://www.protein-solutions.com .
  49. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  50. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  51. N. V. Voshchinnikov, V. G. Farafonov, “Optical properties of spheroidal particles,” Astrophys. Space Sci. 204, 19–86 (1993). [CrossRef]
  52. N. G. Khlebtsov, L. A. Trachuk, A. G. Melnikov, “Plasmon resonances of silver and gold nanorods,” in Coherent Optics of Ordered and Random Media IV, D. A. Zimnyakov, ed., Proc. SPIE5475, 1–11 (2004).
  53. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Spectral extinction of colloidal gold and its biospecific conjugates,” J. Colloid Interface Sci. 180, 436–445 (1996). [CrossRef]
  54. S. Bruzzone, G. P. Arrighini, C. Guidotti, “Some spectroscopic properties of gold nanorods according to a schematic quantum model founded on the dielectric behavior of the electron-gas confined in a box. I,” Chem. Phys. 291, 125–140 (2003). [CrossRef]
  55. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002). [CrossRef] [PubMed]
  56. E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003). [CrossRef]
  57. N. G. Khlebtsov, “Orientational averaging of light-scattering observables in the T-matrix approach,” Appl. Opt. 31, 5359–5365 (1992). [CrossRef] [PubMed]
  58. M. I. Mishchenko, L. D. Travis, A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge U. Press, 2002).
  59. N. G. Khlebtsov, A. G. Melnikov, “Depolarization of light scattered by fractal soot clusters: an approximate anisotropic model,” Opt. Spectrosc. 79, 605–609 (1995).
  60. N. G. Khlebtsov, L. A. Trachuk, A. G. Melnikov, “Effect of the size, shape, and structure of metal nanoparticles on the dependence their optical properties on the refractive index of the external medium,” Opt. Spectrosc. 98, 82–89 (2005). [CrossRef]
  61. K. R. Brown, D. G. Walter, M. J. Natan, “Seeding of colloidal au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12, 306–313 (2000). [CrossRef]
  62. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  63. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).
  64. N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, A. V. Alekseeva, L. A. Trachuk, B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B 109, 13,578–13,584 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited