OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 29 — Oct. 10, 2005
  • pp: 6296–6306

Model for continuous-wave laser-induced thermal lens spectrometry of optically transparent surface-absorbing solids

Dmitry A. Nedosekin, Mikhail A. Proskurnin, and Mikhail Yu. Kononets  »View Author Affiliations

Applied Optics, Vol. 44, Issue 29, pp. 6296-6306 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (200 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical model for cw laser-induced thermal lens spectrometry of optically transparent surface-absorbing solids is developed. In the model, the sample is represented as a set of discrete layers with certain thicknesses and light absorptivities. The bloomed thermo-optical element in the sample is described with a summation of heat-flux functions for all the layers. The model employs simple mathematical expressions and can be used for both steady-state and time-resolved thermal lens experiments. Good coincidence of the experimental and theoretically predicted signal dependences is achieved. This model is verified for volume-absorbing samples (colored optical glasses) and used successfully to calculate absorbances and concentrations for various surface-absorbing samples.

© 2005 Optical Society of America

OCIS Codes
(300.6430) Spectroscopy : Spectroscopy, photothermal
(300.6490) Spectroscopy : Spectroscopy, surface

ToC Category:

Original Manuscript: January 3, 2005
Manuscript Accepted: May 2, 2005
Published: October 10, 2005

Dmitry A. Nedosekin, Mikhail A. Proskurnin, and Mikhail Yu. Kononets, "Model for continuous-wave laser-induced thermal lens spectrometry of optically transparent surface-absorbing solids," Appl. Opt. 44, 6296-6306 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, 1996).
  2. M. L. Baesso, J. Shen, R. D. Snook, “Time-resolved thermal lens measurements of thermal diffusivity of soda–lime glass,” Chem. Phys. Lett. 197, 255–258 (1992). [CrossRef]
  3. T. Catunda, M. L. Baesso, Y. Messaddeq, M. A. Aegerter, “Time-resolved Z-scan and thermal lens measurements in Er+3and Nd+3doped fluoroindate glasses,” J. Non-Cryst. Solids 213, 225–230 (1997). [CrossRef]
  4. S. M. Lima, J. A. Sampaio, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, F. C. G. Gandra, “Time-resolved thermal lens measurements of thermo-optical properties of fluoride glasses,” J. Non-Cryst. Solids 256, 337–342 (1999). [CrossRef]
  5. M. L. Baesso, J. Shen, R. D. Snook, “Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths,” J. Appl. Phys. 75, 3732–3737 (1994). [CrossRef]
  6. A. A. Andrade, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, “Electronic and thermal contributions to the non-linear refractive index of Nd3+ion-doped fluoride glasses,” J. Non-Cryst. Solids 273, 257–265 (2000). [CrossRef]
  7. S. M. Lima, A. A. Andrade, T. Catunda, R. Lebullenger, F. Smektala, Y. Jestin, M. L. Baesso, “Thermal and optical properties of chalcogalide glass,” J. Non-Cryst. Solids 284, 203–209 (2001). [CrossRef]
  8. J. A. Sampaio, T. Catunda, S. Gama, M. L. Baesso, “Thermo-optical properties of OH-free erbium-doped low silica calcium alumosilicate glass measured by thermal lens technique,” J. Non-Cryst. Solids 284, 210–216 (2001). [CrossRef]
  9. A. A. Andrade, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, “Thermal-lens measurements of fluores-cence quantum efficiency in Nd3+-doped fluoride glasses,” J. Non-Cryst. Solids 284, 255–260 (2001). [CrossRef]
  10. J. Shen, R. D. Snook, “A radial finite model of thermal lens spectrometry and the influence of sample radius upon the validity of the radial infinite model,” J. Appl. Phys. 73, 5286–5288 (1993). [CrossRef]
  11. R. D. Snook, R. D. Lowe, M. L. Baesso, “Photothermal spectrometry for membrane and interfacial region studies,” Analyst 123, 587–593 (1998). [CrossRef]
  12. R. D. Snook, R. D. Lowe, “Thermal lens spectrometry. A review,” Analyst 120, 2051–2068 (1995). [CrossRef]
  13. S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000). [CrossRef]
  14. T. Shimosaka, T. Sugil, T. Hobo, J. B. A. Ross, K. Uchiyama, “Monitoring of dye adsorption phenomena at a silica glass/water interface with total internal reflection coupled with a thermal lens effect,” Anal. Chem. 72, 3532–3538 (2000). [CrossRef] [PubMed]
  15. H. Kawazumi, T. Kaieda, T. Inoue, T. Ogawa, “Development of an interfacial thermal lens technique: monitoring for the dissolving process of amphiphilic molecules at the hexane–water interface,” Chem. Phys. Lett. 282, 159–163 (1998). [CrossRef]
  16. H. Hisamoto, T. Horiuchi, M. Tokeshi, A. Hibara, T. Kitamori, “On-chip integration of neutral ionophore-based ion pair extraction reaction,” Anal. Chem 73, 1382–1386 (2001). [CrossRef]
  17. J. F. Power, “Fresnel diffraction model for the point spread of a laser light profile microscope (LPM),” Appl. Phys. B 78, 693–703 (2004). [CrossRef]
  18. J. F. Power, “Linear Tikhonov regularization against an edge field: an improved reconstruction algorithm in photothermal depth profilometry,” Appl. Phys. B 76, 569–582 (2003). [CrossRef]
  19. J. Shen, R. D. Lowe, R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys 165, 385–396 (1992). [CrossRef]
  20. Sh. Wu, N. J. Dovichi, “Fresnel diffraction theory for steady-state thermal lens measurements in thin films,” J. Appl. Phys. 67, 1170–1182 (1990). [CrossRef]
  21. M. A. Schweitzer, J. F. Power, “Optical depth profiling of thin films by impulse mirage-effect spectroscopy. Part I: theory,” Appl. Spectrosc. 48, 1054–1075 (1994). [CrossRef]
  22. W. B. Jackson, N. M. Amer, A. C. Boccara, D. A. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981). [CrossRef] [PubMed]
  23. D. W. Tang, N. Araki, “Non-Fourier heat conduction in a finite medium under periodic surface thermal disturbance,” Int. J. Heat Mass Transfer 39, 1585–1590 (1996). [CrossRef]
  24. G. Gutierrez, T.-Ch. Jen, “Numerical simulation of non-linear heat conduction subjected to a laser source: the effect of variable thermal properties,” Int. J. Heat Mass Transfer 43, 2177–2182 (2000). [CrossRef]
  25. M. Pons, S. Nonell, I. Garcia-Moreno, A. Costela, R. Sastre, “Thermal diffusion coefficients of solid polymeric laser dye solutions: a time-resolved thermal lens study,” presented at the Third Internet Photochemistry and Photobiology Conference, 24 November to 24 December 2000, http://www.photobiology.com/photobiology2000/nonell/index.htm .
  26. M. A. Proskurnin, V. V. Kuznetsova, “Optimization of the optical scheme of a dual-beam thermal lens spectrometer using expert estimation,” Anal. Chin. Acta 418, 101–111 (2000). [CrossRef]
  27. A. G. Abroskin, T. V. Belyaeva, V. A. Filichkina, E. K. Ivanova, M. A. Proscurnin, V. M. Savostina, Yu. A. Barbalat, “Thermal lens spectrometry in trace metal analysis,” Analyst 117, 1957–1962 (1992). [CrossRef]
  28. I. M. Uvarov, The Book of USSR State Standards. 9411-81. Colored Optical Glass. Technical Conditions (Standards Publishing House, Moscow, 1981).
  29. M. Yu. Kononets, S. N. Bendrysheva, M. A. Proskurnin, E. V. Proskurnina, E. M. Minkovskil, A. R. Tarasov, G. V. Lisichkin, “Thermal-lens spectrometry for studying molecular layers covalently bonded to a flat glass surface,” Mendeleev Commun. 12, 9–11 (2002). [CrossRef]
  30. D. A. Nedosekin, T. Yu. Chaikovskii, M. Yu. Kononets, M. A. Proskurnin, G. V. Lisichkin, “Thermooptical determination of vanadium and tin compounds at the surface of chemically modified silica,” J. Anal. Chem. (to be published).
  31. V. V. Chernysh, M. A. Proskurnin, M. Yu. Kononets, S. N. Bendrysheva, “Investigation of adsorption of nanogram quantities of iron(II) tris-(1,10-phenanthrolinate) on glasses and silica by thermal lens spectrometry,” Talanta 53, 1221–1227 (2001). [CrossRef]
  32. A. V. Pirogov, W. Buchberger, “Ionene-coated sulfonated silica as a packing material in the packed-capillary mode of electrochromatography,” J. Chromatogr. A 916, 51–59 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited