OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 3 — Jan. 20, 2005
  • pp: 316–327

Microinterferometric optical phase tomography for measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices

Brent L. Bachim and Thomas K. Gaylord  »View Author Affiliations


Applied Optics, Vol. 44, Issue 3, pp. 316-327 (2005)
http://dx.doi.org/10.1364/AO.44.000316


View Full Text Article

Enhanced HTML    Acrobat PDF (1253 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new technique, microinterferometric optical phase tomography, is introduced for use in measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices. The method combines microscopy-based fringe-field interferometry with parallel projection-based computed tomography to characterize fiber index profiles. The theory relating interference measurements to the projection set required for tomographic reconstruction is given, and discrete numerical simulations are presented for three test index profiles that establish the technique’s ability to characterize fiber with small, asymmetric index differences. An experimental measurement configuration and specific interferometry and tomography practices employed in the technique are discussed.

© 2005 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(110.6960) Imaging systems : Tomography
(180.3170) Microscopy : Interference microscopy

History
Original Manuscript: February 9, 2004
Revised Manuscript: October 6, 2004
Manuscript Accepted: October 8, 2004
Published: January 20, 2005

Citation
Brent L. Bachim and Thomas K. Gaylord, "Microinterferometric optical phase tomography for measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices," Appl. Opt. 44, 316-327 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-3-316


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164–180 (2000). [CrossRef]
  2. T. Erdogan, V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11, 2100–2105 (1994). [CrossRef]
  3. Y. Ishii, K. Shima, S. Okude, K. Nishide, A. Wada, “PDL suppression on long-period fiber gratings by azimuthally isotropic exposure,” IEICE Trans. Electron. E85-C, 934–939 (2002).
  4. B. L. Bachim, T. K. Gaylord, “Polarization-dependent loss and birefringence in long-period fiber gratings,” Appl. Opt. 42, 6816–6823 (2003). [CrossRef] [PubMed]
  5. K. Dossou, S. LaRochelle, M. Fontaine, “Numerical analysis of the contribution of the transverse asymmetry in the photo-induced index change profile to the birefringence of optical fiber,” J. Lightwave Technol. 20, 1463–1470 (2002). [CrossRef]
  6. E. Anemogiannis, E. N. Glytsis, T. K. Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations,” J. Lightwave Technol. 21, 218–227 (2003). [CrossRef]
  7. A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett. 19, 1260–1262 (1994). [CrossRef] [PubMed]
  8. L. M. Boggs, H. M. Presby, D. Marcuse, “Rapid automatic index profiling of whole-fiber samples. 1,” Bell Syst. Tech. J. 58, 867–882 (1979). [CrossRef]
  9. D. Marcuse, H. M. Presby, “Focusing method for nondestructive measurement of optical fiber index profiles,” Appl. Opt. 18, 14–22 (1979). [CrossRef] [PubMed]
  10. Y. Kokubun, K. Iga, “Precise measurement of the refractive index profile of optical fibers by a nondestructive interference method,” Trans. IECE Japan E60, 702–707 (1977).
  11. Q. Zhong, D. Inniss, “Characterization of the lightguiding structure of optical fibers by atomic force microscopy,” J. Light-wave Technol. 12, 1517–1523 (1994). [CrossRef]
  12. S. T. Huntington, P. Mulvaney, A. Roberts, K. A. Nugent, M. Bazylenko, “Atomic force microscopy for the determination of refractive index profiles of optical fibers and waveguides: a quantitative study,” J. Appl. Phys. 82, 2730–2734 (1997). [CrossRef]
  13. N. H. Fontaine, M. Young, “Two-dimensional index profiling of fibers and waveguides,” Appl. Opt. 38, 6836–6844 (1999). [CrossRef]
  14. K. Toga, N. Amano, K.-I. Noda, “Microscopic computer tomography measurement of nonaxisymmetrically distributed optical fiber refractive index,” J. Lightwave Technol. 6, 73–79 (1988). [CrossRef]
  15. T. Okoshi, M. Nishimura, “Measurement of axially non-symmetrical refractive-index distribution of a single-mode fiber by a multidirectional scattering-pattern method,” J. Lightwave Technol. 1, 9–14 (1983). [CrossRef]
  16. A. Barty, K. A. Nugent, A. Roberts, D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175, 329–336 (2000). [CrossRef]
  17. N. Barakat, H. A. El-Hennawi, E. A. El-Ghafar, H. El-Ghandoor, R. Hassan, F. El-Diasty, “Three-dimensional refractive index profile of a GRIN optical waveguide using multiple beam interference fringes,” Opt. Commun. 191, 39–47 (2001). [CrossRef]
  18. W. Górski, “The influence of diffraction in microinterferometry and microtomography of optical fibers,” Opt. Lasers Eng. 41, 563–583 (2004). [CrossRef]
  19. W. Górski, M. Kujawińska, “Three-dimensional reconstruction of refractive index inhomogeneities in optical phase elements,” Opt. Lasers Eng. 38, 373–385 (2002). [CrossRef]
  20. J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances (SPIE Press, Bellingham, Wash., 2003).
  21. J. Schwider, “Advanced evaluation techniques in interferometry,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1990), Vol. 28, pp. 271–359. [CrossRef]
  22. M. Sochacka, “Optical fiber profiling by phase-stepping transverse interferometry,” J. Lightwave Technol. 12, 19–23 (1994). [CrossRef]
  23. B. V. Dorrio, J. L. Fernández, “Phase-evaluation methods in whole-field optical measurement techniques,” Meas. Sci. Technol. 10, R33–R55 (1999). [CrossRef]
  24. D. Marcuse, H. Presby, “Index profile measurements of fibres and their evaluation,” Proc. IEEE 68, 666–688 (1980). [CrossRef]
  25. M. Pluta, Measuring Techniques, Vol. 3, Advanced Light Microscopy (Elsevier, New York, 1993).
  26. M. Pluta, “Profile refractometry of optical fibers using double-refracting microinterferometry,” in radient-Index Optics in Science and Engineering, M. Pluta, M. Szyjer, eds., Proc. SPIE2943, 113–127 (1996). [CrossRef]
  27. Y. Park, S. Choi, U. C. Paek, K. Oh, D. Y. Kim, “Measurement method for profiling the residual stress of an optical fiber: detailed analysis of off-focusing and beam-deflection effects,” Appl. Opt. 42, 1182–1190 (2003). [CrossRef] [PubMed]
  28. D. A. Viskoe, G. W. Donohoe, “Optimal computed tomography data acquisition techniques and filter selection for detection of small density variations,” IEEE Trans. Instrum. Meas. 45, 70–76 (1996). [CrossRef]
  29. S. Vázquez-Montiel, J. J. Sánchez-Escobar, O. Fuentes, “Obtaining the phase of an interferogram by use of an evolution strategy. 1,” Appl. Opt. 41, 3448–3452 (2002). [CrossRef]
  30. J. M. Gauch, “Noise removal and contrast enhancement,” in The Colour Image Processing Handbook, S. J. Sangwine, R. E. N. Home, eds. (Chapman & Hall, New York, 1998), pp. 149–162. [CrossRef]
  31. A. Barty, “Quantitative phase-amplitude microscopy,” Ph.D. dissertation (University of Melbourne, Parkville, Victoria, Australia, 2000).
  32. Ernst Leitz GmbH, “Transmitted-light interference microscope instructions,” (Ernst Leitz, Wetzlar, Germany, 1971).
  33. H. H. Barrett, W. Swindell, Radiological Imaging: The Theory of Image Formation, Detection, and Processing (Academic, New York, 1981), Vol. 2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited