OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 3 — Jan. 20, 2005
  • pp: 348–357

Direct bidirectional angle-insensitive imaging of the flow signal intensity in Doppler optical coherence tomography

Daqing Piao and Quing Zhu  »View Author Affiliations


Applied Optics, Vol. 44, Issue 3, pp. 348-357 (2005)
http://dx.doi.org/10.1364/AO.44.000348


View Full Text Article

Enhanced HTML    Acrobat PDF (1746 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a new method, to our knowledge, for direct detection of flow signal intensity by stationary target rejection. In our system, two delay lines are constructed with identical scanning speed and ranging depth. One delay line is used for depth ranging as well as phase modulation, and the other one acts as a full-range retroreflector (FRRR). The signal from this FRRR carries the overall features of local phase modulation, and it is used as the local oscillator for coherent demodulation. With this setup, stationary targets can be rejected at a 4-kHz high-pass cutoff frequency of the filter that follows the demodulator, compared with 20 kHz for conventional fixed-frequency demodulation. This technique features angle insensitivity and provides flow direction as well by implementing standard in-phase and quadrature detection. Besides the direct directional detection of flow signal intensity, flow speed information can be acquired with postprocessing.

© 2005 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

History
Original Manuscript: February 2, 2004
Revised Manuscript: July 9, 2004
Manuscript Accepted: August 2, 2004
Published: January 20, 2005

Citation
Daqing Piao and Quing Zhu, "Direct bidirectional angle-insensitive imaging of the flow signal intensity in Doppler optical coherence tomography," Appl. Opt. 44, 348-357 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-3-348

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited