OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 3 — Jan. 20, 2005
  • pp: 412–422

Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results

Giorgio Dall’Olmo and Anatoly A. Gitelson  »View Author Affiliations


Applied Optics, Vol. 44, Issue 3, pp. 412-422 (2005)
http://dx.doi.org/10.1364/AO.44.000412


View Full Text Article

Enhanced HTML    Acrobat PDF (408 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The analytical development and underlying hypothesis of a three-band algorithm for estimating chlorophyll-a concentration ([Chla]) in turbid productive waters are presented. The sensitivity of the algorithm to the spectral location of the bands used is analyzed. A large set of experimental observations ([Chla] varied between 4 and 217 mg m−3 and turbidity between 2 and 78 nephelometric turbidity units) was used to calibrate and validate the algorithm. It was found that the variability of the chlorophyll-a fluorescence quantum yield and of the chlorophyll-a specific absorption coefficient can reduce considerably the accuracy of remote predictions of [Chla]. Instead of parameterizing these interferences, their effects were minimized by tuning the spectral regions used in the algorithm. This allowed us to predict [Chla] with a relative root-mean-square error of less than 30%.

© 2005 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: March 23, 2004
Revised Manuscript: September 15, 2004
Manuscript Accepted: September 21, 2004
Published: January 20, 2005

Citation
Giorgio Dall’Olmo and Anatoly A. Gitelson, "Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results," Appl. Opt. 44, 412-422 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-3-412


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Gitelson, K. Y. Kondratyev, “Optical models of mesotrophic and eutrophic water bodies,” Int. J. Remote Sens. 12, 373–385 (1991). [CrossRef]
  2. A. A. Gitelson, G. Garbuzov, F. Szilagyi, K.-H. Mittenzwey, A. Karnieli, A. Kaiser, “Quantitative remote sensing methods for real time monitoring of inland water quality,” Int. J. Remote Sens. 14, 1269–1295 (1993). [CrossRef]
  3. A. G. Dekker, “Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing,” Ph.D. thesis (Vrije Universiteit, Amsterdam, The Netherlands, 1993).
  4. H. J. Gons, M. Rijkeboer, K. G. Ruddick, “A chlorophyll-retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters,” J. Plankton Res. 24, 947–951 (2002). [CrossRef]
  5. H. J. Gons, “Optical teledetection of chlorophyll a in turbid inland waters,” Environ. Sci. Technol. 33, 1127–1132 (1999). [CrossRef]
  6. H. J. Gons, M. Rijkeboer, S. Bagheri, K. G. Ruddick, “Optical teledetection of chlorophyll a in estuarine and coastal waters,” Environ. Sci. Technol. 34, 5189–5192 (2000). [CrossRef]
  7. K. G. Ruddick, H. J. Gons, M. Rijkeboer, G. Tilstone, “Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties,” Appl. Opt. 40, 3575–3585 (2001). [CrossRef]
  8. A. A. Gitelson, M. Mayo, Y. Z. Yacobi, A. Parparov, T. Berman, “The use of high-spectral-resolution radiometer data for detection of low chlorophyll concentrations in Lake Kinneret,” J. Plankton Res. 16, 993–1002 (1994). [CrossRef]
  9. J. F. R. Gower, “Observations of in-situ fluorescence of chlorophyll-a in Saanich Intel,” Boundary-Layer Meteorol. 18, 235–245 (1980). [CrossRef]
  10. R. A. Neville, J. F. R. Gower, “Passive remote sensing of phytoplankton via chlorophyll α fluorescence,” J. Geophys. Res. 82, 3487–3493 (1977). [CrossRef]
  11. J. F. R. Gower, R. Doerffer, G. A. Borstad, “Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS,” Int. J. Remote Sens. 20, 1771–1786 (1999). [CrossRef]
  12. A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. [Oceans] 100, 13321–13332 (1995). [CrossRef]
  13. M. Babin, A. Morel, B. Gentili, “Remote sensing of sea surface sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence,” Int. J. Remote Sens. 17, 2417–2448 (1996). [CrossRef]
  14. D. A. Kiefer, R. A. Reynolds, “Advances in understanding phytoplankton fluorescence and photosynthesis,” in Primary Productivity and Biogeochemical Cycles in the Sea,P. G. Falkowsky, A. D. Woodhead, eds. (Plenum, New York, 1992). [CrossRef]
  15. G. Dall’Olmo, A. A. Gitelson, D. C. Rundquist, “Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters,” Geophys. Res. Lett. 30, 1938, doi: (2003). [CrossRef]
  16. A. A. Gitelson, Y. Gritz, M. N. Merzlyak, “Relationship between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves,” J. Plant Physiol. 160, 271–282 (2003). [CrossRef] [PubMed]
  17. Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33, 5721–5732 (1994). [CrossRef] [PubMed]
  18. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988). [CrossRef]
  19. K. L. Carder, R. G. Steward, “A remote-sensing reflectance model of a red-tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30, 286–298 (1985). [CrossRef]
  20. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by the molecular-scattering contribution,” Appl. Opt. 30, 4427–4438 (1991). [CrossRef] [PubMed]
  21. A. Morel, B. Gentili, “Diffuse-reflectance of oceanic waters. 2. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993). [CrossRef] [PubMed]
  22. H. Loisel, A. Morel, “Nonisotropy of the upward radiance field in typical coastal (case 2) waters,” Int. J. Remote Sens. 22, 275–295 (2001). [CrossRef]
  23. F. Melin, G. Zibordi, J. F. Berthon, “Assessment of SeaWiFS atmospheric and marine products for the Northern Adriatic Sea,” IEEE Trans. Geosci. Remote Sens. 41, 548–558 (2003). [CrossRef]
  24. T. Heege, “Flugzeuggestützte Fernerkundung von Wasserinhaltsstoffen am Bodensee,” Ph.D. thesis (DLR-Forschungsbericht, Wessling, Germany, 2002).
  25. C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989). [CrossRef]
  26. A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 1, 43–53 (1981). [CrossRef]
  27. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University, Cambridge, UK, 1994). [CrossRef]
  28. M. Babin, D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002). [CrossRef]
  29. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).
  30. N. A. Welschmeyer, “Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments,” Limnol. Oceanogr. 39, 1985–1992 (1994). [CrossRef]
  31. American Public, Health Association, American Water, Works Association, Water Pollution, Control Federation, Standard Methods for the Examination of Water and Wastewater (American Public Health Association, Washington, D.C., 1989).
  32. S. Tassan, G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40, 1358–1368 (1995). [CrossRef]
  33. G. S. Fargion, J. L. Mueller, “Ocean optics protocols for SeaWiFS validation, revision 2,” (NASA Goddard Space Flight Center, Greenbelt, Maryland, 2000).
  34. G. B. Mitchell, “Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT)” in Ocean Optics X (SPIE, Bellingham, Wash., 1990). [CrossRef]
  35. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977). [CrossRef]
  36. A. A. Gitelson, “The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration,” Int. J. Remote Sens. 13, 3367–3373 (1992). [CrossRef]
  37. A. Vasilkov, O. Kopelevich, “Reasons for the appearance of the maximum near 700 nm in the radiance spectrum emitted by the ocean layer,” Oceanology 22, 697–701 (1982).
  38. P. Pringsheim, Fluorescence and Phosphorescence (Inter-science, New York, (1949).
  39. P. G. Falkowski, J. A. Raven, Aquatic Photosynthesis (Blackwell, Malden, Massachusetts, 1997).
  40. K. Allali, A. Bricaud, H. Claustre, “Spatial variations in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetically active pigments in the equatorial pacific,” J. Geophys. Res. [Oceans] 102, 12413–12423 (1997). [CrossRef]
  41. S. E. Lohrenz, A. D. Weidemann, M. Tuel, “Phytoplankton spectral absorption as influenced by community size structure and pigment composition,” J. Plankton Res. 25, 35–61 (2003). [CrossRef]
  42. D. Stramski, A. Sciandra, H. Claustre, “Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira Pseudonana,” Limnol. Oceanogr. 47, 392–403 (2002). [CrossRef]
  43. H. Claustre, A. Bricaud, M. Babin, F. Babin, F. Bruyant, L. Guillou, F. Le Gall, D. Marie, F. Partensky, “Diel variations in prochlorococcus optical properties,” Limnol. Oceanogr. 47, 1637–1647 (2002). [CrossRef]
  44. T. Fujiki, S. Taguchi, “Variability in chlorophyll alpha specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance,” J. Plankton Res. 24, 859–874 (2002). [CrossRef]
  45. H. Buiteveld, J. H. M. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, Proc. SPIE2258, 174–183 (1994). [CrossRef]
  46. V. E. Brando, A. G. Dekker, “The fluorescence term on the observed 690–710 nm reflectance peak in eutrophic turbid (inland) waters: myth or reality?” in Ocean Optics XVI, (Office of Naval Research, Santa Fe, New Mexico, 2002).
  47. C. S. Roesler, M. J. Perry, “In-situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. [Oceans] 100, 13279–13294 (1995). [CrossRef]
  48. A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. [Oceans] 103, 31033–31044 (1998). [CrossRef]
  49. D. Pierson, N. Strömbäck, “A modelling approach to evaluate preliminary remote sensing algorithms: use of water quality data from Swedish great lakes,” Geophysica 36, 177–202 (2000).
  50. K. Oki, Y. Yasuoka, “Estimation of chlorophyll concentration in lakes and inland seas with a field spectroradiometer above the water surface,” Appl. Opt. 41, 6463–6469 (2002). [CrossRef] [PubMed]
  51. E. F. Hoge, C. W. S. N. R. Wright, “Radiance-ratio algorithm wavelengths for remote oceanic chlorophyll determination,” Appl. Opt. 26, 2082–2094 (1987). [CrossRef] [PubMed]
  52. K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Veps, T. Pyh, “Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons,” Sci. Total Environ. 268, 59–77 (2001). [CrossRef] [PubMed]
  53. J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, M. Hallikainen, “A semi-operative approach to lake water quality retrieval from remote sensing data,” Sci. Total Environ. 268, 79–93 (2001). [CrossRef] [PubMed]
  54. K. Kallio, S. Koponen, J. Pulliainen, “Feasibility of airborne imaging spectrometry for lake monitoring: a case study of spatial chlorophyll alpha distribution in two meso-eutrophic lakes,” Int. J. Remote Sens. 24, 3771–3790 (2003). [CrossRef]
  55. P. Ammenberg, P. Flink, T. Lindell, D. Pierson, N. Strombeck, “Bio-optical modelling combined with remote sensing to assess water quality,” Int. J. Remote Sens. 23, 1621–1638 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited